
9C H A P T E R

Time-Varying Fields
and Maxwell’s Equations

T he basic relationships of the electrostatic field and the steady magnetic field
were obtained in the previous eight chapters, and we are now ready to discuss
time-varying fields. The discussion will be short, for vector analysis and

vector calculus should now be more familiar tools; some of the relationships are
unchanged, and most of the relationships are changed only slightly.

Two new concepts will be introduced: the electric field produced by a changing
magnetic field and the magnetic field produced by a changing electric field. The first
of these concepts resulted from experimental research by Michael Faraday and the
second from the theoretical efforts of James Clerk Maxwell.

Maxwell actually was inspired by Faraday’s experimental work and by the mental
picture provided through the “lines of force” that Faraday introduced in developing
his theory of electricity and magnetism. He was 40 years younger than Faraday, but
they knew each other during the five years Maxwell spent in London as a young
professor, a few years after Faraday had retired. Maxwell’s theory was developed
subsequent to his holding this university position while he was working alone at his
home in Scotland. It occupied him for five years between the ages of 35 and 40.

The four basic equations of electromagnetic theory presented in this chapter bear
his name. ■

9.1 FARADAY’S LAW
After Oersted1 demonstrated in 1820 that an electric current affected a compass
needle, Faraday professed his belief that if a current could produce a magnetic field,
then a magnetic field should be able to produce a current. The concept of the “field”

1 Hans Christian Oersted was professor of physics at the University of Copenhagen in Denmark.
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278 ENGINEERING ELECTROMAGNETICS

was not available at that time, and Faraday’s goal was to show that a current could be
produced by “magnetism.”

He worked on this problem intermittently over a period of 10 years, until he
was finally successful in 1831.2 He wound two separate windings on an iron toroid
and placed a galvanometer in one circuit and a battery in the other. Upon closing
the battery circuit, he noted a momentary deflection of the galvanometer; a similar
deflection in the opposite direction occurred when the battery was disconnected. This,
of course, was the first experiment he made involving a changing magnetic field, and
he followed it with a demonstration that either a moving magnetic field or a moving
coil could also produce a galvanometer deflection.

In terms of fields, we now say that a time-varying magnetic field produces an
electromotive force (emf) that may establish a current in a suitable closed circuit.
An electromotive force is merely a voltage that arises from conductors moving in a
magnetic field or from changing magnetic fields, and we shall define it in this section.
Faraday’s law is customarily stated as

emf = −d�

dt
V (1)

Equation (1) implies a closed path, although not necessarily a closed conducting
path; the closed path, for example, might include a capacitor, or it might be a purely
imaginary line in space. The magnetic flux is that flux which passes through any and
every surface whose perimeter is the closed path, and d�/dt is the time rate of change
of this flux.

A nonzero value of d�/dt may result from any of the following situations:

1. A time-changing flux linking a stationary closed path

2. Relative motion between a steady flux and a closed path

3. A combination of the two

The minus sign is an indication that the emf is in such a direction as to produce
a current whose flux, if added to the original flux, would reduce the magnitude of
the emf. This statement that the induced voltage acts to produce an opposing flux is
known as Lenz’s law.3

If the closed path is that taken by an N -turn filamentary conductor, it is often
sufficiently accurate to consider the turns as coincident and let

emf = −N
d�

dt
(2)

where � is now interpreted as the flux passing through any one of N coincident
paths.

2 Joseph Henry produced similar results at Albany Academy in New York at about the same time.
3 Henri Frederic Emile Lenz was born in Germany but worked in Russia. He published his law in 1834.
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We need to define emf as used in (1) or (2). The emf is obviously a scalar, and
(perhaps not so obviously) a dimensional check shows that it is measured in volts.
We define the emf as

emf =
∮

E · dL (3)

and note that it is the voltage about a specific closed path. If any part of the path is
changed, generally the emf changes. The departure from static results is clearly shown
by (3), for an electric field intensity resulting from a static charge distribution must lead
to zero potential difference about a closed path. In electrostatics, the line integral leads
to a potential difference; with time-varying fields, the result is an emf or a voltage.

Replacing � in (1) with the surface integral of B, we have

emf =
∮

E · dL = − d

dt

∫

S
B · dS (4)

where the fingers of our right hand indicate the direction of the closed path, and
our thumb indicates the direction of dS. A flux density B in the direction of dS and
increasing with time thus produces an average value of E which is opposite to the
positive direction about the closed path. The right-handed relationship between the
surface integral and the closed line integral in (4) should always be kept in mind
during flux integrations and emf determinations.

We will divide our investigation into two parts by first finding the contribution to
the total emf made by a changing field within a stationary path (transformer emf), and
then we will consider a moving path within a constant (motional, or generator, emf).

We first consider a stationary path. The magnetic flux is the only time-varying
quantity on the right side of (4), and a partial derivative may be taken under the integral
sign,

emf =
∮

E · dL = −
∫

S

∂B
∂t

· dS (5)

Before we apply this simple result to an example, let us obtain the point form of
this integral equation. Applying Stokes’ theorem to the closed line integral, we have∫

S
(∇ × E) · dS = −

∫

S

∂B
∂t

· dS

where the surface integrals may be taken over identical surfaces. The surfaces are
perfectly general and may be chosen as differentials,

(∇ × E) · dS = −∂B
∂t

· dS

and

∇ × E = −∂B
∂t

(6)
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This is one of Maxwell’s four equations as written in differential, or point, form,
the form in which they are most generally used. Equation (5) is the integral form of
this equation and is equivalent to Faraday’s law as applied to a fixed path. If B is not
a function of time, (5) and (6) evidently reduce to the electrostatic equations

∮
E · dL = 0 (electrostatics)

and

∇ × E = 0 (electrostatics)

As an example of the interpretation of (5) and (6), let us assume a simple magnetic
field which increases exponentially with time within the cylindrical region ρ < b,

B = B0ekt az (7)

where B0 = constant. Choosing the circular path ρ = a, a < b, in the z = 0 plane,
along which Eφ must be constant by symmetry, we then have from (5)

emf = 2πaEφ = −k B0ektπa2

The emf around this closed path is −k B0ektπa2. It is proportional to a2 because
the magnetic flux density is uniform and the flux passing through the surface at any
instant is proportional to the area.

If we now replace a with ρ, ρ < b, the electric field intensity at any point is

E = − 1
2 k B0ektρaφ (8)

Let us now attempt to obtain the same answer from (6), which becomes

(∇ × E)z = −k B0ekt = 1

ρ

∂(ρEφ)

∂ρ

Multiplying by ρ and integrating from 0 to ρ (treating t as a constant, since the
derivative is a partial derivative),

− 1
2 k B0ektρ2 = ρEφ

or

E = − 1
2 k B0ektρaφ

once again.
If B0 is considered positive, a filamentary conductor of resistance R would have

a current flowing in the negative aφ direction, and this current would establish a flux
within the circular loop in the negative az direction. Because Eφ increases exponen-
tially with time, the current and flux do also, and thus they tend to reduce the time rate
of increase of the applied flux and the resultant emf in accordance with Lenz’s law.

Before leaving this example, it is well to point out that the given field B does
not satisfy all of Maxwell’s equations. Such fields are often assumed (always in ac-
circuit problems) and cause no difficulty when they are interpreted properly. They
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Figure 9.1 An example illustrating the application of
Faraday’s law to the case of a constant magnetic flux density
B and a moving path. The shorting bar moves to the right
with a velocity v, and the circuit is completed through the two
rails and an extremely small high-resistance voltmeter. The
voltmeter reading is V12 = −Bvd.

occasionally cause surprise, however. This particular field is discussed further in
Problem 9.19 at the end of the chapter.

Now let us consider the case of a time-constant flux and a moving closed path.
Before we derive any special results from Faraday’s law (1), let us use the basic law to
analyze the specific problem outlined in Figure 9.1. The closed circuit consists of two
parallel conductors which are connected at one end by a high-resistance voltmeter of
negligible dimensions and at the other end by a sliding bar moving at a velocity v.
The magnetic flux density B is constant (in space and time) and is normal to the plane
containing the closed path.

Let the position of the shorting bar be given by y; the flux passing through the
surface within the closed path at any time t is then

� = Byd

From (1), we obtain

emf = −d�

dt
= −B

dy

dt
d = −Bνd (9)

The emf is defined as
∮

E · dL and we have a conducting path, so we may actually
determine E at every point along the closed path. We found in electrostatics that the
tangential component of E is zero at the surface of a conductor, and we shall show in
Section 9.4 that the tangential component is zero at the surface of a perfect conductor
(σ = ∞) for all time-varying conditions. This is equivalent to saying that a perfect
conductor is a “short circuit.” The entire closed path in Figure 9.1 may be considered
a perfect conductor, with the exception of the voltmeter. The actual computation of∮

E · dL then must involve no contribution along the entire moving bar, both rails,
and the voltmeter leads. Because we are integrating in a counterclockwise direction
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(keeping the interior of the positive side of the surface on our left as usual), the
contribution E �L across the voltmeter must be −Bνd, showing that the electric
field intensity in the instrument is directed from terminal 2 to terminal 1. For an up-
scale reading, the positive terminal of the voltmeter should therefore be terminal 2.

The direction of the resultant small current flow may be confirmed by noting that
the enclosed flux is reduced by a clockwise current in accordance with Lenz’s law.
The voltmeter terminal 2 is again seen to be the positive terminal.

Let us now consider this example using the concept of motional emf. The force
on a charge Q moving at a velocity v in a magnetic field B is

F = Qv × B

or
F
Q

= v × B (10)

The sliding conducting bar is composed of positive and negative charges, and each
experiences this force. The force per unit charge, as given by (10), is called the
motional electric field intensity Em ,

Em = v × B (11)

If the moving conductor were lifted off the rails, this electric field intensity would force
electrons to one end of the bar (the far end) until the static field due to these charges
just balanced the field induced by the motion of the bar. The resultant tangential
electric field intensity would then be zero along the length of the bar.

The motional emf produced by the moving conductor is then

emf =
∮

Em · dL =
∮

(v × B) · dL (12)

where the last integral may have a nonzero value only along that portion of the path
which is in motion, or along which v has some nonzero value. Evaluating the right
side of (12), we obtain

∮
(v × B) · dL =

∫ 0

d
νB dx = −Bνd

as before. This is the total emf, since B is not a function of time.
In the case of a conductor moving in a uniform constant magnetic field, we may

therefore ascribe a motional electric field intensity Em = v × B to every portion of
the moving conductor and evaluate the resultant emf by

emf =
∮

E · dL =
∮

Em · dL =
∮

(v × B) · dL (13)

If the magnetic flux density is also changing with time, then we must include
both contributions, the transformer emf (5) and the motional emf (12),

emf =
∮

E · dL = −
∫

S

∂B
∂t

· dS +
∮

(v × B) · dL (14)
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Figure 9.2 An apparent increase in flux linkages does
not lead to an induced voltage when one part of a circuit
is simply substituted for another by opening the switch.
No indication will be observed on the voltmeter.

This expression is equivalent to the simple statement

emf = −d�

dt
(1)

and either can be used to determine these induced voltages.
Although (1) appears simple, there are a few contrived examples in which its

proper application is quite difficult. These usually involve sliding contacts or switches;
they always involve the substitution of one part of a circuit by a new part.4 As an
example, consider the simple circuit of Figure 9.2, which contains several perfectly
conducting wires, an ideal voltmeter, a uniform constant field B, and a switch. When
the switch is opened, there is obviously more flux enclosed in the voltmeter circuit;
however, it continues to read zero. The change in flux has not been produced by either
a time-changing B [first term of (14)] or a conductor moving through a magnetic field
[second part of (14)]. Instead, a new circuit has been substituted for the old. Thus it
is necessary to use care in evaluating the change in flux linkages.

The separation of the emf into the two parts indicated by (14), one due to the time
rate of change of B and the other to the motion of the circuit, is somewhat arbitrary
in that it depends on the relative velocity of the observer and the system. A field that
is changing with both time and space may look constant to an observer moving with
the field. This line of reasoning is developed more fully in applying the special theory
of relativity to electromagnetic theory.5

D9.1. Within a certain region, ε = 10−11 F/m and µ = 10−5 H/m. If Bx =
2×10−4 cos 105t sin 10−3 y T: (a) use ∇ ×H = ε

∂E
∂t

to find E; (b) find the total

magnetic flux passing through the surface x = 0, 0 < y < 40 m, 0 < z < 2 m,

4 See Bewley, in References at the end of the chapter, particularly pp. 12–19.
5 This is discussed in several of the references listed in the References at the end of the chapter.
See Panofsky and Phillips, pp. 142–51; Owen, pp. 231–45; and Harman in several places.
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at t = 1 µs; (c) find the value of the closed line integral of E around the peri-
meter of the given surface.

Ans. −20 000 sin 105t cos 10−3 yaz V/m; 0.318 mWb; −3.19 V

D9.2. With reference to the sliding bar shown in Figure 9.1, let d = 7 cm,
B = 0.3az T, and v = 0.1aye20y m/s. Let y = 0 at t = 0. Find: (a) ν(t = 0);
(b) y(t = 0.1); (c) ν(t = 0.1); (d) V12 at t = 0.1.

Ans. 0.1 m/s; 1.12 cm; 0.125 m/s; −2.63 mV

9.2 DISPLACEMENT CURRENT
Faraday’s experimental law has been used to obtain one of Maxwell’s equations in
differential form,

∇ × E = −∂B
∂t

(15)

which shows us that a time-changing magnetic field produces an electric field. Re-
membering the definition of curl, we see that this electric field has the special property
of circulation; its line integral about a general closed path is not zero. Now let us turn
our attention to the time-changing electric field.

We should first look at the point form of Ampère’s circuital law as it applies to
steady magnetic fields,

∇ × H = J (16)

and show its inadequacy for time-varying conditions by taking the divergence of each
side,

∇ · ∇ × H ≡ 0 = ∇ · J

The divergence of the curl is identically zero, so ∇ · J is also zero. However, the
equation of continuity,

∇ · J = −∂ρν

∂t
then shows us that (16) can be true only if ∂ρν/∂t = 0. This is an unrealistic limitation,
and (16) must be amended before we can accept it for time-varying fields. Suppose
we add an unknown term G to (16),

∇ × H = J + G

Again taking the divergence, we have

0 = ∇ · J + ∇ · G

Thus

∇ · G = ∂ρν

∂t



CHAPTER 9 Time-Varying Fields and Maxwell’s Equations 285

Replacing ρν with ∇ · D,

∇ · G = ∂

∂t
(∇ · D) = ∇ · ∂D

∂t
from which we obtain the simplest solution for G,

G = ∂D
∂t

Ampère’s circuital law in point form therefore becomes

∇ × H = J + ∂D
∂t

(17)

Equation (17) has not been derived. It is merely a form we have obtained that
does not disagree with the continuity equation. It is also consistent with all our other
results, and we accept it as we did each experimental law and the equations derived
from it. We are building a theory, and we have every right to our equations until they
are proved wrong. This has not yet been done.

We now have a second one of Maxwell’s equations and shall investigate its sig-
nificance. The additional term ∂D/∂t has the dimensions of current density, amperes
per square meter. Because it results from a time-varying electric flux density (or dis-
placement density), Maxwell termed it a displacement current density. We sometimes
denote it by Jd :

∇ × H = J + Jd

Jd = ∂D
∂t

This is the third type of current density we have met. Conduction current density,

J = σE

is the motion of charge (usually electrons) in a region of zero net charge density, and
convection current density,

J = ρνv

is the motion of volume charge density. Both are represented by J in (17). Bound
current density is, of course, included in H. In a nonconducting medium in which no
volume charge density is present, J = 0, and then

∇ × H = ∂D
∂t

(if J = 0) (18)

Notice the symmetry between (18) and (15):

∇ × E = −∂B
∂t

(15)

Again, the analogy between the intensity vectors E and H and the flux density
vectors D and B is apparent. We cannot place too much faith in this analogy, however,
for it fails when we investigate forces on particles. The force on a charge is related to E
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Figure 9.3 A filamentary conductor forms a loop connecting the
two plates of a parallel-plate capacitor. A time-varying magnetic
field inside the closed path produces an emf of V0 cos ωt around
the closed path. The conduction current I is equal to the
displacement current between the capacitor plates.

and to B, and some good arguments may be presented showing an analogy between E
and B and between D and H. We omit them, however, and merely say that the concept
of displacement current was probably suggested to Maxwell by the symmetry first
mentioned in this paragraph.6

The total displacement current crossing any given surface is expressed by the
surface integral,

Id =
∫

S
Jd · dS =

∫

S

∂D
∂t

· dS

and we may obtain the time-varying version of Ampère’s circuital law by integrating
(17) over the surface S,∫

S
(∇ × H) · dS =

∫

S
J · dS +

∫

S

∂D
∂t

· dS

and applying Stokes’ theorem,

∮
H · dL = I + Id = I +

∫

S

∂D
∂t

· dS (19)

What is the nature of displacement current density? Let us study the simple circuit of
Figure 9.3, which contains a filamentary loop and a parallel-plate capacitor. Within

6 The analogy that relates B to D and H to E is strongly advocated by Fano, Chu, and Adler (see
References for Chapter 6); the case for comparing B to E and D to H is presented in Halliday and
Resnick (see References for this chapter).
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the loop, a magnetic field varying sinusoidally with time is applied to produce an
emf about the closed path (the filament plus the dashed portion between the capacitor
plates), which we shall take as

emf = V0 cos ωt

Using elementary circuit theory and assuming that the loop has negligible resis-
tance and inductance, we may obtain the current in the loop as

I = −ωCV0 sin ωt

= −ω
εS

d
V0 sin ωt

where the quantities ε, S, and d pertain to the capacitor. Let us apply Ampère’s circuital
law about the smaller closed circular path k and neglect displacement current for the
moment: ∮

k
H · dL = Ik

The path and the value of H along the path are both definite quantities (although
difficult to determine), and

∮
k H · dL is a definite quantity. The current Ik is that

current through every surface whose perimeter is the path k. If we choose a sim-
ple surface punctured by the filament, such as the plane circular surface defined by
the circular path k, the current is evidently the conduction current. Suppose now
we consider the closed path k as the mouth of a paper bag whose bottom passes
between the capacitor plates. The bag is not pierced by the filament, and the con-
ductor current is zero. Now we need to consider displacement current, for within the
capacitor

D = εE = ε

(
V0

d
cos ωt

)

and therefore

Id = ∂D

∂t
S = −ω

εS

d
V0 sin ωt

This is the same value as that of the conduction current in the filamentary loop.
Therefore the application of Ampère’s circuital law, including displacement current
to the path k, leads to a definite value for the line integral of H. This value must be
equal to the total current crossing the chosen surface. For some surfaces the current
is almost entirely conduction current, but for those surfaces passing between the
capacitor plates, the conduction current is zero, and it is the displacement current
which is now equal to the closed line integral of H.

Physically, we should note that a capacitor stores charge and that the electric field
between the capacitor plates is much greater than the small leakage fields outside.
We therefore introduce little error when we neglect displacement current on all those
surfaces which do not pass between the plates.

Displacement current is associated with time-varying electric fields and therefore
exists in all imperfect conductors carrying a time-varying conduction current. The last
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part of the following drill problem indicates the reason why this additional current
was never discovered experimentally.

D9.3. Find the amplitude of the displacement current density: (a) adjacent to
an automobile antenna where the magnetic field intensity of an FM signal is
Hx = 0.15 cos[3.12(3 × 108t − y)] A/m; (b) in the air space at a point within a
large power distribution transformer where B = 0.8 cos[1.257×10−6(3×108t−
x)]ay T; (c) within a large, oil-filled power capacitor where εr = 5 and E =
0.9 cos[1.257 × 10−6(3 × 108t − z

√
5)]ax MV/m; (d) in a metallic conductor

at 60 Hz, if ε = ε0, µ = µ0, σ = 5.8 × 107 S/m, and J = sin(377t − 117.1z)ax

MA/m2.

Ans. 0.468 A/m2; 0.800 A/m2; 0.0150 A/m2; 57.6 pA/m2

9.3 MAXWELL’S EQUATIONS
IN POINT FORM

We have already obtained two of Maxwell’s equations for time-varying fields,

∇ × E = −∂B
∂t

(20)

and

∇ × H = J + ∂D
∂t

(21)

The remaining two equations are unchanged from their non-time-varying form:

∇ · D = ρν (22)

∇ · B = 0 (23)

Equation (22) essentially states that charge density is a source (or sink) of electric
flux lines. Note that we can no longer say that all electric flux begins and terminates
on charge, because the point form of Faraday’s law (20) shows that E, and hence D,
may have circulation if a changing magnetic field is present. Thus the lines of electric
flux may form closed loops. However, the converse is still true, and every coulomb
of charge must have one coulomb of electric flux diverging from it.

Equation (23) again acknowledges the fact that “magnetic charges,” or poles, are
not known to exist. Magnetic flux is always found in closed loops and never diverges
from a point source.

These four equations form the basis of all electromagnetic theory. They are partial
differential equations and relate the electric and magnetic fields to each other and to
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their sources, charge and current density. The auxiliary equations relating D and E,

D = εE (24)

relating B and H,

B = µH (25)

defining conduction current density,

J = σE (26)

and defining convection current density in terms of the volume charge density ρν ,

J = ρνv (27)

are also required to define and relate the quantities appearing in Maxwell’s equations.
The potentials V and A have not been included because they are not strictly

necessary, although they are extremely useful. They will be discussed at the end of
this chapter.

If we do not have “nice” materials to work with, then we should replace (24) and
(25) with the relationships involving the polarization and magnetization fields,

D = ε0E + P (28)

B = µ0(H + M) (29)

For linear materials we may relate P to E

P = χeε0E (30)

and M to H

M = χmH (31)

Finally, because of its fundamental importance we should include the Lorentz
force equation, written in point form as the force per unit volume,

f = ρν(E + v × B) (32)

The following chapters are devoted to the application of Maxwell’s equations to
several simple problems.
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D9.4. Let µ = 10−5 H/m, ε = 4 × 10−9 F/m, σ = 0, and ρν = 0. Find k
(including units) so that each of the following pairs of fields satisfies Maxwell’s
equations: (a) D = 6ax − 2yay + 2zaz nC/m2, H = kxax + 10yay − 25zaz

A/m; (b) E = (20y − kt)ax V/m, H = (y + 2 × 106t)az A/m.

Ans. 15 A/m2; −2.5 × 108 V/(m · s)

9.4 MAXWELL’S EQUATIONS
IN INTEGRAL FORM

The integral forms of Maxwell’s equations are usually easier to recognize in terms of
the experimental laws from which they have been obtained by a generalization process.
Experiments must treat physical macroscopic quantities, and their results therefore
are expressed in terms of integral relationships. A differential equation always rep-
resents a theory. Let us now collect the integral forms of Maxwell’s equations from
Section 9.3.

Integrating (20) over a surface and applying Stokes’ theorem, we obtain Faraday’s
law,

∮
E · dL = −

∫

S

∂B
∂t

· dS (33)

and the same process applied to (21) yields Ampère’s circuital law,

∮
H · dL = I +

∫

S

∂D
∂t

· dS (34)

Gauss’s laws for the electric and magnetic fields are obtained by integrating (22)
and (23) throughout a volume and using the divergence theorem:

∮

S
D · dS =

∫

vol
ρνdv (35)

∮

S
B · dS = 0 (36)

These four integral equations enable us to find the boundary conditions on B, D, H,
and E, which are necessary to evaluate the constants obtained in solving Maxwell’s
equations in partial differential form. These boundary conditions are in general un-
changed from their forms for static or steady fields, and the same methods may be
used to obtain them. Between any two real physical media (where K must be zero on
the boundary surface), (33) enables us to relate the tangential E-field components,

Et1 = Et2 (37)
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and from (34),

Ht1 = Ht2 (38)

The surface integrals produce the boundary conditions on the normal components,

DN1 − DN2 = ρS (39)

and

BN1 = BN2 (40)

It is often desirable to idealize a physical problem by assuming a perfect conductor
for which σ is infinite but J is finite. From Ohm’s law, then, in a perfect conductor,

E = 0

and it follows from the point form of Faraday’s law that

H = 0

for time-varying fields. The point form of Ampère’s circuital law then shows that the
finite value of J is

J = 0

and current must be carried on the conductor surface as a surface current K. Thus, if
region 2 is a perfect conductor, (37) to (40) become, respectively,

Et1 = 0 (41)

Ht1 = K (Ht1 = K × aN ) (42)

DN1 = ρs (43)

BN1 = 0 (44)

where aN is an outward normal at the conductor surface.
Note that surface charge density is considered a physical possibility for either di-

electrics, perfect conductors, or imperfect conductors, but that surface current density
is assumed only in conjunction with perfect conductors.

The preceding boundary conditions are a very necessary part of Maxwell’s
equations. All real physical problems have boundaries and require the solution of
Maxwell’s equations in two or more regions and the matching of these solutions at
the boundaries. In the case of perfect conductors, the solution of the equations within
the conductor is trivial (all time-varying fields are zero), but the application of the
boundary conditions (41) to (44) may be very difficult.

Certain fundamental properties of wave propagation are evident when Maxwell’s
equations are solved for an unbounded region. This problem is treated in Chapter 11.
It represents the simplest application of Maxwell’s equations because it is the only
problem which does not require the application of any boundary conditions.
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D9.5. The unit vector 0.64ax + 0.6ay − 0.48az is directed from region 2
(εr = 2, µr = 3, σ2 = 0) toward region 1 (εr1 = 4, µr1 = 2, σ1 = 0).
If B1 = (ax − 2ay + 3az) sin 300t T at point P in region 1 adjacent to the
boundary, find the amplitude at P of: (a) BN1; (b) Bt1; (c) BN2; (d) B2.

Ans. 2.00 T; 3.16 T; 2.00 T; 5.15 T

D9.6. The surface y = 0 is a perfectly conducting plane, whereas the region
y > 0 has εr = 5, µr = 3, and σ = 0. Let E = 20 cos(2×108t −2.58z)ay V/m
for y > 0, and find at t = 6 ns; (a) ρS at P(2, 0, 0.3); (b) H at P; (c) K at P.

Ans. 0.81 nC/m2; −62.3ax mA/m; −62.3az mA/m

9.5 THE RETARDED POTENTIALS
The time-varying potentials, usually called retarded potentials for a reason that we
will see shortly, find their greatest application in radiation problems (to be addressed
in Chapter 14) in which the distribution of the source is known approximately. We
should remember that the scalar electric potential V may be expressed in terms of a
static charge distribution,

V =
∫

vol

ρνdν

4πεR
(static) (45)

and the vector magnetic potential may be found from a current distribution which is
constant with time,

A =
∫

vol

µJ dv

4πR
(dc) (46)

The differential equations satisfied by V ,

∇2V = −ρν

ε
(static) (47)

and A,

∇2A = −µJ (dc) (48)

may be regarded as the point forms of the integral equations (45) and (46), respectively.
Having found V and A, the fundamental fields are then simply obtained by using

the gradient,

E = −∇V (static) (49)

or the curl,

B = ∇ × A (dc) (50)

We now wish to define suitable time-varying potentials which are consistent with
the preceding expressions when only static charges and direct currents are involved.

Equation (50) apparently is still consistent with Maxwell’s equations. These
equations state that ∇ · B = 0, and the divergence of (50) leads to the divergence of
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the curl that is identically zero. Let us therefore tentatively accept (50) as satisfactory
for time-varying fields and turn our attention to (49).

The inadequacy of (49) is obvious because application of the curl operation to
each side and recognition of the curl of the gradient as being identically zero confront
us with ∇ × E = 0. However, the point form of Faraday’s law states that ∇ × E is
not generally zero, so let us try to effect an improvement by adding an unknown term
to (49),

E = −∇V + N

taking the curl,

∇ × E = 0 + ∇ × N

using the point form of Faraday’s law,

∇ × N = −∂B
∂t

and using (50), giving us

∇ × N = − ∂

∂t
(∇ × A)

or

∇ × N = −∇ × ∂A
∂t

The simplest solution of this equation is

N = −∂A
∂t

and this leads to

E = −∇V − ∂A
∂t

(51)

We still must check (50) and (51) by substituting them into the remaining two of
Maxwell’s equations:

∇ × H = J + ∂D
∂t

∇ · D = ρν

Doing this, we obtain the more complicated expressions

1

µ
∇ × ∇ × A = J + ε

(
−∇ ∂V

∂t
− ∂2A

∂t2

)

and

ε

(
−∇ · ∇V − ∂

∂t
∇ · A

)
= ρν

or

∇(∇ · A) − ∇2A = µJ − µε

(
∇ ∂V

∂t
+ ∂2A

∂t2

)
(52)
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and

∇2V + ∂

∂t
(∇ · A) = −ρν

ε
(53)

There is no apparent inconsistency in (52) and (53). Under static or dc conditions
∇ · A = 0, and (52) and (53) reduce to (48) and (47), respectively. We will therefore
assume that the time-varying potentials may be defined in such a way that B and
E may be obtained from them through (50) and (51). These latter two equations do
not serve, however, to define A and V completely. They represent necessary, but not
sufficient, conditions. Our initial assumption was merely that B = ∇ × A, and a
vector cannot be defined by giving its curl alone. Suppose, for example, that we have
a very simple vector potential field in which Ay and Az are zero. Expansion of (50)
leads to

Bx = 0

By = ∂Ax

∂z

Bz = −∂Ax

∂y

and we see that no information is available about the manner in which Ax varies with
x . This information could be found if we also knew the value of the divergence of A,
for in our example

∇ · A = ∂ Ax

∂x

Finally, we should note that our information about A is given only as partial derivatives
and that a space-constant term might be added. In all physical problems in which the
region of the solution extends to infinity, this constant term must be zero, for there
can be no fields at infinity.

Generalizing from this simple example, we may say that a vector field is defined
completely when both its curl and divergence are given and when its value is known at
any one point (including infinity). We are therefore at liberty to specify the divergence
of A, and we do so with an eye on (52) and (53), seeking the simplest expressions.
We define

∇ · A = −µε
∂V

∂t
(54)

and (52) and (53) become

∇2A = −µJ + µε
∂2A
∂t2

(55)

and

∇2V = −ρν

ε
+ µε

∂2V

∂t2
(56)

These equations are related to the wave equation, which will be discussed in
Chapters 10 and 11. They show considerable symmetry, and we should be highly



CHAPTER 9 Time-Varying Fields and Maxwell’s Equations 295

pleased with our definitions of V and A,

B = ∇ × A (50)

∇ · A = −µε
∂V

∂t
(54)

E = −∇V − ∂A
∂t

(51)

The integral equivalents of (45) and (46) for the time-varying potentials follow
from the definitions (50), (51), and (54), but we shall merely present the final results
and indicate their general nature. In Chapter 11, we will find that any electromagnetic
disturbance will travel at a velocity

ν = 1√
µε

through any homogeneous medium described by µ and ε. In the case of free space,
this velocity turns out to be the velocity of light, approximately 3 × 108 m/s. It is
logical, then, to suspect that the potential at any point is due not to the value of the
charge density at some distant point at the same instant, but to its value at some
previous time, because the effect propagates at a finite velocity. Thus (45) becomes

V =
∫

vol

[ρν]

4πεR
dν (57)

where [ρν] indicates that every t appearing in the expression for ρν has been replaced
by a retarded time,

t ′ = t − R

ν

Thus, if the charge density throughout space were given by

ρν = e−r cos ωt

then

[ρν] = e−r cos

[
ω

(
t − R

ν

)]

where R is the distance between the differential element of charge being considered
and the point at which the potential is to be determined.

The retarded vector magnetic potential is given by

A =
∫

vol

µ[J]

4πR
dν (58)

The use of a retarded time has resulted in the time-varying potentials being given
the name of retarded potentials. In Chapter 14 we will apply (58) to the simple situation
of a differential current element in which I is a sinusoidal function of time. Other
simple applications of (58) are considered in several problems at the end of this chapter.
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We may summarize the use of the potentials by stating that a knowledge of the
distribution of ρν and J throughout space theoretically enables us to determine V and
A from (57) and (58). The electric and magnetic fields are then obtained by applying
(50) and (51). If the charge and current distributions are unknown, or reasonable
approximations cannot be made for them, these potentials usually offer no easier path
toward the solution than does the direct application of Maxwell’s equations.

D9.7. A point charge of 4 cos 108π t µC is located at P+(0, 0, 1.5), whereas
−4 cos 108π t µC is at P−(0, 0, −1.5), both in free space. Find V at P(r = 450,

θ, φ = 0) at t = 15 ns for θ =: (a) 0◦; (b) 90◦; (c) 45◦.

Ans. 159.8 V; 0; 143 V
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CHAPTER 9 PROBLEMS
9.1 In Figure 9.4, let B = 0.2 cos 120π t T, and assume that the conductor

joining the two ends of the resistor is perfect. It may be assumed that the
magnetic field produced by I (t) is negligible. Find (a) Vab(t); (b) I (t).

9.2 In the example described by Figure 9.1, replace the constant magnetic flux
density by the time-varying quantity B = B0 sin ωt az . Assume that U is
constant and that the displacement y of the bar is zero at t = 0. Find the emf
at any time, t .
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Figure 9.4 See Problem 9.1.

9.3 Given H = 300az cos(3 × 108t − y) A/m in free space, find the emf
developed in the general aφ direction about the closed path having corners
at (a) (0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, 0); (b) (0, 0, 0) (2π , 0, 0),
(2π , 2π , 0), and (0, 2π , 0).

9.4 A rectangular loop of wire containing a high-resistance voltmeter has
corners initially at (a/2, b/2, 0), (−a/2, b/2, 0), (−a/2, −b/2, 0), and
(a/2, −b/2, 0). The loop begins to rotate about the x axis at constant
angular velocity ω, with the first-named corner moving in the az direction at
t = 0. Assume a uniform magnetic flux density B = B0az . Determine the
induced emf in the rotating loop and specify the direction of the current.

9.5 The location of the sliding bar in Figure 9.5 is given by x = 5t + 2t3,
and the separation of the two rails is 20 cm. Let B = 0.8x2az T. Find the
voltmeter reading at (a) t = 0.4 s; (b) x = 0.6 m.

9.6 Let the wire loop of Problem 9.4 be stationary in its t = 0 position and find
the induced emf that results from a magnetic flux density given by
B(y, t) = B0 cos(ωt − βy) az , where ω and β are constants.

Figure 9.5 See Problem 9.5.
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Figure 9.6 See Problem 9.7.

9.7 The rails in Figure 9.6 each have a resistance of 2.2 �/m. The bar moves to
the right at a constant speed of 9 m/s in a uniform magnetic field of 0.8 T.
Find I (t), 0 < t < 1 s, if the bar is at x = 2 m at t = 0 and (a) a 0.3 �

resistor is present across the left end with the right end open-circuited; (b) a
0.3 � resistor is present across each end.

9.8 A perfectly conducting filament is formed into a circular ring of radius a. At
one point, a resistance R is inserted into the circuit, and at another a battery
of voltage V0 is inserted. Assume that the loop current itself produces
negligible magnetic field. (a) Apply Faraday’s law, Eq. (4), evaluating each
side of the equation carefully and independently to show the equality; (b)
repeat part a, assuming the battery is removed, the ring is closed again, and
a linearly increasing B field is applied in a direction normal to the loop
surface.

9.9 A square filamentary loop of wire is 25 cm on a side and has a resistance of
125 � per meter length. The loop lies in the z = 0 plane with its corners at
(0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at t = 0. The loop is
moving with a velocity vy = 50 m/s in the field Bz = 8 cos(1.5 ×
108t − 0.5x) µT. Develop a function of time that expresses the ohmic power
being delivered to the loop.

9.10 (a) Show that the ratio of the amplitudes of the conduction current density
and the displacement current density is σ/ωε for the applied field E =
Em cos ωt . Assume µ = µ0. (b) What is the amplitude ratio if the applied
field is E = Eme−t/τ , where τ is real?

9.11 Let the internal dimensions of a coaxial capacitor be a = 1.2 cm, b = 4 cm,
and l = 40 cm. The homogeneous material inside the capacitor has the
parameters ε = 10−11 F/m, µ = 10−5 H/m, and σ = 10−5 S/m. If the
electric field intensity is E = (106/ρ) cos 105taρ V/m, find (a) J; (b) the



CHAPTER 9 Time-Varying Fields and Maxwell’s Equations 299

total conduction current Ic through the capacitor; (c) the total displacement
current Id through the capacitor; (d) the ratio of the amplitude of Id to that
of Ic, the quality factor of the capacitor.

9.12 Find the displacement current density associated with the magnetic field
H = A1 sin(4x) cos(ωt − βz) ax + A2 cos(4x) sin(ωt − βz) az .

9.13 Consider the region defined by |x |, |y|, and |z| < 1. Let εr = 5, µr = 4, and
σ = 0. If Jd = 20 cos(1.5 × 108t − bx)ay µA/m2 (a) find D and E; (b) use
the point form of Faraday’s law and an integration with respect to time to
find B and H; (c) use ∇ × H = Jd + J to find Jd . (d) What is the numerical
value of b?

9.14 A voltage source V0 sin ωt is connected between two concentric conducting
spheres, r = a and r = b, b > a, where the region between them is a
material for which ε = εrε0, µ = µ0, and σ = 0. Find the total
displacement current through the dielectric and compare it with the source
current as determined from the capacitance (Section 6.3) and
circuit-analysis methods.

9.15 Let µ = 3 × 10−5 H/m, ε = 1.2 × 10−10 F/m, and σ = 0 everywhere.
If H = 2 cos(1010t − βx)az A/m, use Maxwell’s equations to obtain
expressions for B, D, E, and β.

9.16 Derive the continuity equation from Maxwell’s equations.

9.17 The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z <

0.06 m in free space is given by E = C sin 12y sin az cos 2 × 1010tax V/m.
Beginning with the ∇ × E relationship, use Maxwell’s equations
to find a numerical value for a, if it is known that a is greater than zero.

9.18 The parallel-plate transmission line shown in Figure 9.7 has dimensions
b = 4 cm and d = 8 mm, while the medium between the plates is
characterized by µr = 1, εr = 20, and σ = 0. Neglect fields outside the
dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s

Figure 9.7 See Problem 9.18.
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equations to help find (a) β, if β > 0; (b) the displacement current density
at z = 0; (c) the total displacement current crossing the surface x = 0.5d ,
0 < y < b, 0 < z < 0.1 m in the ax direction.

9.19 In Section 9.1, Faraday’s law was used to show that the field
E = − 1

2 k B0ektρaφ results from the changing magnetic field B = B0ekt az .
(a) Show that these fields do not satisfy Maxwell’s other curl equation.
(b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large
magnetic flux density in 1 µs. Use the ∇ × H equation to show that the rate
at which Bz should (but does not) change with ρ is only about 5 × 10−6 T
per meter in free space at t = 0.

9.20 Given Maxwell’s equations in point form, assume that all fields vary as est

and write the equations without explicitly involving time.

9.21 (a) Show that under static field conditions, Eq. (55) reduces to Ampère’s
circuital law. (b) Verify that Eq. (51) becomes Faraday’s law when we take
the curl.

9.22 In a sourceless medium in which J = 0 and ρν = 0, assume a rectangular
coordinate system in which E and H are functions only of z and t . The
medium has permittivity ε and permeability µ. (a) If E = Ex ax and
H = Hyay , begin with Maxwell’s equations and determine the second-order
partial differential equation that Ex must satisfy. (b) Show that
Ex = E0 cos(ωt − βz) is a solution of that equation for a particular value of
β. (c) Find β as a function of given parameters.

9.23 In region 1, z < 0, ε1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 =
4 × 10−3 S/m; in region 2, z > 0, ε2 = ε1/2, µ2 = 2µ1, and σ2 = σ1/4. It is
known that E1 = (30ax + 20ay + 10az) cos 109t V/m at P(0, 0, 0−). (a)
Find EN1, Et1, DN1, and Dt1 at P1. (b) Find JN1 and Jt1 at P1. (c) Find Et2,
Dt2, and Jt2 at P2(0, 0, 0+). (d) (Harder) Use the continuity equation to help
show that JN1 − JN2 = ∂ DN2/∂t − ∂ DN1/∂t , and then determine DN2,
JN2, and EN2.

9.24 A vector potential is given as A = A0 cos(ωt − kz) ay . (a) Assuming as
many components as possible are zero, find H, E, and V . (b) Specify k in
terms of A0, ω, and the constants of the lossless medium, ε and µ.

9.25 In a region where µr = εr = 1 and σ = 0, the retarded potentials are given
by V = x(z − ct) V and A = x

( z

c
− t

)
az Wb/m, where c = 1

√
µ0ε0.

(a) Show that ∇ · A = −µε
∂V

∂t
. (b) Find B, H, E, and D. (c) Show that

these results satisfy Maxwell’s equations if J and ρν are zero.

9.26 Write Maxwell’s equations in point form in terms of E and H as they apply
to a sourceless medium, where J and ρv are both zero. Replace ε by µ, µ by
ε, E by H, and H by −E, and show that the equations are unchanged. This
is a more general expression of the duality principle in circuit theory.
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The Uniform
Plane Wave

T his chapter is concerned with the application of Maxwell’s equations to the
problem of electromagnetic wave propagation. The uniform plane wave rep-
resents the simplest case, and while it is appropriate for an introduction, it is

of great practical importance. Waves encountered in practice can often be assumed
to be of this form. In this study, we will explore the basic principles of electromag-
netic wave propagation, and we will come to understand the physical processes that
determine the speed of propagation and the extent to which attenuation may occur.
We will derive and use the Poynting theorem to find the power carried by a wave.
Finally, we will learn how to describe wave polarization. ■

11.1 WAVE PROPAGATION IN FREE SPACE
We begin with a quick study of Maxwell’s equations, in which we look for clues
of wave phenomena. In Chapter 10, we saw how voltages and currents propagate as
waves in transmission lines, and we know that the existence of voltages and currents
implies the existence of electric and magnetic fields. So we can identify a transmission
line as a structure that confines the fields while enabling them to travel along its length
as waves. It can be argued that it is the fields that generate the voltage and current
in a transmission line wave, and—if there is no structure on which the voltage and
current can exist—the fields will exist nevertheless, and will propagate. In free space,
the fields are not bounded by any confining structure, and so they may assume any
magnitude and direction, as initially determined by the device (such as an antenna)
that generates them.

When considering electromagnetic waves in free space, we note that the medium
is sourceless (ρν = J = 0). Under these conditions, Maxwell’s equations may be

367
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written in terms of E and H only as

∇ × H = ε0
∂E
∂t

(1)

∇ × E = −µ0
∂H
∂t

(2)

∇ · E = 0 (3)

∇ · H = 0 (4)

Now let us see whether wave motion can be inferred from these four equations
without actually solving them. Equation (1) states that if electric field E is changing
with time at some point, then magnetic field H has curl at that point; therefore H varies
spatially in a direction normal to its orientation direction. Also, if E is changing with
time, then H will in general also change with time, although not necessarily in the
same way. Next, we see from Eq. (2) that a time-varying H generates E, which,
having curl, varies spatially in the direction normal to its orientation. We now have
once more a changing electric field, our original hypothesis, but this field is present
a small distance away from the point of the original disturbance. We might guess
(correctly) that the velocity with which the effect moves away from the original point
is the velocity of light, but this must be checked by a more detailed examination of
Maxwell’s equations.

We postulate the existence of a uniform plane wave, in which both fields, E and
H, lie in the transverse plane—that is, the plane whose normal is the direction of
propagation. Furthermore, and by definition, both fields are of constant magnitude in
the transverse plane. For this reason, such a wave is sometimes called a transverse
electromagnetic (TEM) wave. The required spatial variation of both fields in the
direction normal to their orientations will therefore occur only in the direction of
travel—or normal to the transverse plane. Assume, for example, that E = Ex ax , or
that the electric field is polarized in the x direction. If we further assume that wave
travel is in the z direction, we allow spatial variation of E only with z. Using Eq. (2),
we note that with these restrictions, the curl of E reduces to a single term:

∇ × E = ∂ Ex

∂z
ay = −µ0

∂H
∂t

= −µ0
∂ Hy

∂t
ay (5)

The direction of the curl of E in (5) determines the direction of H, which we observe
to be along the y direction. Therefore, in a uniform plane wave, the directions of E and
H and the direction of travel are mutually orthogonal. Using the y-directed magnetic
field, and the fact that it varies only in z, simplifies Eq. (1) to read

∇ × H = −∂ Hy

∂z
ax = ε0

∂E
∂t

= ε0
∂ Ex

∂t
ax (6)
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Equations (5) and (6) can be more succinctly written:

∂ Ex

∂z
= −µ0

∂ Hy

∂t
(7)

∂ Hy

∂z
= −ε0

∂ Ex

∂t
(8)

These equations compare directly with the telegraphist’s equations for the lossless
transmission line [Eqs. (20) and (21) in Chapter 10]. Further manipulations of (7)
and (8) proceed in the same manner as was done with the telegraphist’s equations.
Specifically, we differentiate (7) with respect to z, obtaining:

∂2 Ex

∂z2
= −µ0

∂2 Hy

∂t∂z
(9)

Then, (8) is differentiated with respect to t :

∂2 Hy

∂z∂t
= −ε0

∂2 Ex

∂t2
(10)

Substituting (10) into (9) results in

∂2 Ex

∂z2
= µ0ε0

∂2 Ex

∂t2
(11)

This equation, in direct analogy to Eq. (13) in Chapter 10, we identify as the wave
equation for our x-polarized TEM electric field in free space. From Eq. (11), we
further identify the propagation velocity:

ν = 1√
µ0ε0

= 3 × 108 m/s = c (12)

where c denotes the velocity of light in free space. A similar procedure, involving
differentiating (7) with t and (8) with z, yields the wave equation for the magnetic
field; it is identical in form to (11):

∂2 Hy

∂z2
= µ0ε0

∂2 Hy

∂t2
(13)

As was discussed in Chapter 10, the solution to equations of the form of (11) and
(13) will be forward- and backward-propagating waves having the general form [in
this case for Eq. (11)]:

Ex (z, t) = f1(t − z/ν) + f2(t + z/ν) (14)

where again f1 amd f2 can be any function whose argument is of the form t ± z/ν.
From here, we immediately specialize to sinusoidal functions of a specified fre-

quency and write the solution to (11) in the form of forward- and backward-propagating
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cosines. Because the waves are sinusoidal, we denote their velocity as the phase ve-
locity, νp. The waves are written as:

Ex (z, t) = Ex (z, t) + E ′
x (z, t)

= |Ex0| cos [ω(t − z/νp) + φ1] + |E ′
x0| cos [ω(t + z/νp) + φ2]

= |Ex0| cos [ωt − k0z + φ1]︸ ︷︷ ︸
forward z travel

+ |E ′
x0| cos [ωt + k0z + φ2]︸ ︷︷ ︸

backward z travel

(15)

In writing the second line of (15), we have used the fact that the waves are traveling in
free space, in which case the phase velocity, νp = c. Additionally, the wavenumber
in free space in defined as

k0 ≡ ω

c
rad/m (16)

In a manner consistant with our transmission line studies, we refer to the solutions
expressed in (15) as the real instantaneous forms of the electric field. They are the
mathematical representations of what one would experimentally measure. The terms
ωt and k0z, appearing in (15), have units of angle and are usually expressed in radians.
We know that ω is the radian time frequency, measuring phase shift per unit time;
it has units of rad/s. In a similar way, we see that k0 will be interpreted as a spatial
frequency, which in the present case measures the phase shift per unit distance along
the z direction in rad/m. We note that k0 is the phase constant for lossless propagation
of uniform plane waves in free space. The wavelength in free space is the distance
over which the spatial phase shifts by 2π radians, assuming fixed time, or

k0z = k0λ = 2π → λ = 2π

k0
(free space) (17)

The manner in which the waves propagate is the same as we encountered in
transmission lines. Specifically, suppose we consider some point (such as a wave
crest) on the forward-propagating cosine function of Eq. (15). For a crest to occur,
the argument of the cosine must be an integer multiple of 2π . Considering the mth
crest of the wave, the condition becomes

k0z = 2mπ

So let us now consider the point on the cosine that we have chosen, and see what
happens as time is allowed to increase. Our requirement is that the entire cosine
argument be the same multiple of 2π for all time, in order to keep track of the chosen
point. Our condition becomes

ωt − k0z = ω(t − z/c) = 2mπ (18)

As time increases, the position z must also increase in order to satisfy (18). The wave
crest (and the entire wave) moves in the positive z direction at phase velocity c (in
free space). Using similar reasoning, the wave in Eq. (15) having cosine argument
(ωt + k0z) describes a wave that moves in the negative z direction, since as time
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increases, z must now decrease to keep the argument constant. For simplicity, we will
restrict our attention in this chapter to only the positive z traveling wave.

As was done for transmission line waves, we express the real instantaneous fields
of Eq. (15) in terms of their phasor forms. Using the forward-propagating field in (15),
we write:

Ex (z, t) = 1

2
|Ex0|e jφ1

︸ ︷︷ ︸
Ex0

e− jk0ze jωt + c.c. = 1

2
Exse jωt + c.c. = Re[Exse jωt ] (19)

where c.c. denotes the complex conjugate, and where we identify the phasor electric
field as Exs = Ex0e− jk0z . As indicated in (19), Ex0 is the complex amplitude (which
includes the phase, φ1).

EXAMPLE 11.1

Let us express Ey(z, t) = 100 cos(108t − 0.5z + 30◦) V/m as a phasor.

Solution. We first go to exponential notation,

Ey(z, t) = Re
[
100e j(108t−0.5z+30◦)

]

and then drop Re and suppress e j108t , obtaining the phasor

Eys(z) = 100e− j0.5z+ j30◦

Note that a mixed nomenclature is used for the angle in this case; that is, 0.5z is in
radians, while 30◦ is in degrees. Given a scalar component or a vector expressed as a
phasor, we may easily recover the time-domain expression.

EXAMPLE 11.2

Given the complex amplitude of the electric field of a uniform plane wave, E0 =
100ax +20 � 30◦ay V/m, construct the phasor and real instantaneous fields if the wave
is known to propagate in the forward z direction in free space and has frequency of
10 MHz.

Solution. We begin by constructing the general phasor expression:

Es(z) = [
100ax + 20e j30◦

ay
]

e− jk0z

where k0 = ω/c = 2π × 107/3 × 108 = 0.21 rad/m. The real instantaneous form is
then found through the rule expressed in Eq. (19):

E(z, t) = Re
[
100e− j0.21ze j2π×107t ax + 20e j30◦

e− j0.21ze j2π×107t ay
]

= Re
[
100e j(2π×107t−0.21z)ax + 20e j(2π×107t−0.21z+30◦)ay

]

= 100 cos (2π × 107t − 0.21z)ax + 20 cos (2π × 107t − 0.21z + 30◦) ay
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It is evident that taking the partial derivative of any field quantity with respect
to time is equivalent to multiplying the corresponding phasor by jω. As an example,
we can express Eq. (8) (using sinusoidal fields) as

∂Hy

∂z
= −ε0

∂Ex

∂t
(20)

where, in a manner consistent with (19):

Ex (z, t) = 1

2
Exs(z) e jωt + c.c. and Hy(z, t) = 1

2
Hys(z) e jωt + c.c. (21)

On substituting the fields in (21) into (20), the latter equation simplifies to

d Hys(z)

dz
= − jωε0 Exs(z) (22)

In obtaining this equation, we note first that the complex conjugate terms in (21)
produce their own separate equation, redundant with (22); second, the e jωt factors,
common to both sides, have divided out; third, the partial derivative with z becomes
the total derivative, since the phasor, Hys , depends only on z.

We next apply this result to Maxwell’s equations, to obtain them in phasor form.
Substituting the field as expressed in (21) into Eqs. (1) through (4) results in

∇ × Hs = jωε0Es (23)

∇ × Es = − jωµ0Hs (24)

∇ · Es = 0 (25)

∇ · Hs = 0 (26)

It should be noted that (25) and (26) are no longer independent relationships, for they
can be obtained by taking the divergence of (23) and (24), respectively.

Eqs. (23) through (26) may be used to obtain the sinusoidal steady-state vector
form of the wave equation in free space. We begin by taking the curl of both sides
of (24):

∇ × ∇ × Es = − jωµ0∇ × Hs = ∇(∇ · Es) − ∇2Es (27)

where the last equality is an identity, which defines the vector Laplacian of Es :

∇2Es = ∇(∇ · Es) − ∇ × ∇ × Es

From (25), we note that ∇ · Es = 0. Using this, and substituting (23) in (27), we
obtain

∇2Es = −k2
0Es (28)
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where again, k0 = ω/c = ω
√

µ0ε0. Equation (28) is known as the vector Helmholtz
equation in free space.1 It is fairly formidable when expanded, even in rectangular
coordinates, for three scalar phasor equations result (one for each vector component),
and each equation has four terms. The x component of (28) becomes, still using the
del-operator notation,

∇2 Exs = −k2
0 Exs (29)

and the expansion of the operator leads to the second-order partial differential equation

∂2 Exs

∂x2
+ ∂2 Exs

∂y2
+ ∂2 Exs

∂z2
= −k2

0 Exs

Again, assuming a uniform plane wave in which Exs does not vary with x or y, the
two corresponding derivatives are zero, and we obtain

d2 Exs

dz2
= −k2

0 Exs (30)

the solution of which we already know:

Exs(z) = Ex0e− jk0z + E ′
x0e jk0z (31)

Let us now return to Maxwell’s equations, (23) through (26), and determine the
form of the H field. Given Es, Hs is most easily obtained from (24):

∇ × Es = − jωµ0Hs (24)

which is greatly simplified for a single Exs component varying only with z,
d Exs

dz
= − jωµ0 Hys

Using (31) for Exs , we have

Hys = − 1

jωµ0

[
(− jk0)Ex0e− jk0z + ( jk0)E ′

x0e jk0z
]

= Ex0

√
ε0

µ0
e− jk0z − E ′

x0

√
ε0

µ0
e jk0z = Hy0e− jk0z + H ′

y0e jk0z (32)

In real instantaneous form, this becomes

Hy(z, t) = Ex0

√
ε0

µ0
cos(ωt − k0z) − E ′

x0

√
ε0

µ0
cos(ωt + k0z) (33)

where Ex0 and E ′
x0 are assumed real.

1 Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a professor at the University of Berlin
working in the fields of physiology, electrodynamics, and optics. Hertz was one of his students.
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In general, we find from (32) that the electric and magnetic field amplitudes of
the forward-propagating wave in free space are related through

Ex0 =
√

µ0

ε0
Hy0 = η0 Hy0 (34a)

We also find the backward-propagating wave amplitudes are related through

E ′
x0 = −

√
µ0

ε0
H ′

y0 = −η0 H ′
y0 (34b)

where the intrinsic impedance of free space is defined as

η0 =
√

µ0

ε0
= 377

.= 120π 
 (35)

The dimension of η0 in ohms is immediately evident from its definition as the ratio of
E (in units of V/m) to H (in units of A/m). It is in direct analogy to the characteristic
impedance, Z0, of a transmission line, where we defined the latter as the ratio of
voltage to current in a traveling wave. We note that the difference between (34a) and
(34b) is a minus sign. This is consistent with the transmission line analogy that led to
Eqs. (25a) and (25b) in Chapter 10. Those equations accounted for the definitions of
positive and negative current associated with forward and backward voltage waves. In
a similar way, Eq. (34a) specifies that in a forward-z propagating uniform plane wave
whose electric field vector lies in the positive x direction at a given point in time and
space, the magnetic field vector lies in the positive y direction at the same space and
time coordinates. In the case of a backward-z propagating wave having a positive
x-directed electric field, the magnetic field vector lies in the negative y direction. The
physical significance of this has to do with the definition of power flow in the wave,
as specified through the Poynting vector, S = E×H (in watts/m2). The cross product
of E with H must give the correct wave propagation direction, and so the need for
the minus sign in (34b) is apparent. Issues relating to power transmission will be
addressed in Section 11.3.

Some feeling for the way in which the fields vary in space may be obtained from
Figures 11.1a and 11.1b. The electric field intensity in Figure 11.1a is shown at t = 0,
and the instantaneous value of the field is depicted along three lines, the z axis and
arbitrary lines parallel to the z axis in the x = 0 and y = 0 planes. Since the field
is uniform in planes perpendicular to the z axis, the variation along all three of the
lines is the same. One complete cycle of the variation occurs in a wavelength, λ. The
values of Hy at the same time and positions are shown in Figure 11.1b.

A uniform plane wave cannot exist physically, for it extends to infinity in two
dimensions at least and represents an infinite amount of energy. The distant field of
a transmitting antenna, however, is essentially a uniform plane wave in some limited
region; for example, a radar signal impinging on a distant target is closely a uniform
plane wave.
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Figure 11.1 (a) Arrows represent the instantaneous values of Ex0 cos[ω(t − z/c)] at
t = 0 along the z axis, along an arbitrary line in the x = 0 plane parallel to the z axis, and
along an arbitrary line in the y = 0 plane parallel to the z axis. (b) Corresponding values
of Hy are indicated. Note that Ex and Hy are in phase at any point in time.

Although we have considered only a wave varying sinusoidally in time and
space, a suitable combination of solutions to the wave equation may be made to
achieve a wave of any desired form, but which satisfies (14). The summation of
an infinite number of harmonics through the use of a Fourier series can produce a
periodic wave of square or triangular shape in both space and time. Nonperiodic
waves may be obtained from our basic solution by Fourier integral methods. These
topics are among those considered in the more advanced books on electromagnetic
theory.

D11.1. The electric field amplitude of a uniform plane wave propagating in
the az direction is 250 V/m. If E = Ex ax and ω = 1.00 Mrad/s, find: (a) the
frequency; (b) the wavelength; (c) the period; (d) the amplitude of H.

Ans. 159 kHz; 1.88 km; 6.28 µs; 0.663 A/m

D11.2. Let Hs = (2 � −40◦ax − 3� 20◦ay)e− j0.07z A/m for a uniform plane
wave traveling in free space. Find: (a) ω; (b) Hx at P(1, 2, 3) at t = 31 ns; (c)
|H| at t = 0 at the origin.

Ans. 21.0 Mrad/s; 1.934 A/m; 3.22 A/m

11.2 WAVE PROPAGATION IN DIELECTRICS
We now extend our analytical treatment of the uniform plane wave to propagation
in a dielectric of permittivity ε and permeability µ. The medium is assumed to be
homogeneous (having constant µ and ε with position) and isotropic (in which µ and
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ε are invariant with field orientation). The Helmholtz equation is

∇2Es = −k2Es (36)

where the wavenumber is a function of the material properties, as described byµ and ε:

k = ω
√

µε = k0
√

µrεr (37)

For Exs we have

d2 Exs

dz2
= −k2 Exs (38)

An important feature of wave propagation in a dielectric is that k can be complex-
valued, and as such it is referred to as the complex propagation constant. A general
solution of (38), in fact, allows the possibility of a complex k, and it is customary to
write it in terms of its real and imaginary parts in the following way:

jk = α + jβ (39)

A solution to (38) will be:

Exs = Ex0e− jkz = Ex0e−αze− jβz (40)

Multiplying (40) by e jωt and taking the real part yields a form of the field that can
be more easily visualized:

Ex = Ex0e−αz cos(ωt − βz) (41)

We recognize this as a uniform plane wave that propagates in the forward z direction
with phase constant β, but which (for positive α) loses amplitude with increasing z
according to the factor e−αz . Thus the general effect of a complex-valued k is to yield a
traveling wave that changes its amplitude with distance. If α is positive, it is called the
attenuation coefficient. If α is negative, the wave grows in amplitude with distance, and
α is called the gain coefficient. The latter effect would occur, for example, in laser am-
plifiers. In the present and future discussions in this book, we will consider only passive
media, in which one or more loss mechanisms are present, thus producing a positive α.

The attenuation coefficient is measured in nepers per meter (Np/m) so that the
exponent of e can be measured in the dimensionless units of nepers. Thus, if α =
0.01 Np/m, the crest amplitude of the wave at z = 50 m will be e−0.5/e−0 = 0.607
of its value at z = 0. In traveling a distance 1/α in the +z direction, the amplitude of
the wave is reduced by the familiar factor of e−1, or 0.368.

The ways in which physical processes in a material can affect the wave electric
field are described through a complex permittivity of the form

ε = ε′ − jε′′ = ε0(ε′
r − jε′′

r ) (42)
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Two important mechanisms that give rise to a complex permittivity (and thus result
in wave losses) are bound electron or ion oscillations and dipole relaxation, both of
which are discussed in Appendix E. An additional mechanism is the conduction of
free electrons or holes, which we will explore at length in this chapter.

Losses arising from the response of the medium to the magnetic field can occur
as well, and these are modeled through a complex permeability, µ = µ′ − jµ′′ =
µ0(µ′

r − jµ′′
r ). Examples of such media include ferrimagnetic materials, or ferrites.

The magnetic response is usually very weak compared to the dielectric response in
most materials of interest for wave propagation; in such materials µ ≈ µ0. Con-
sequently, our discussion of loss mechanisms will be confined to those described
through the complex permittivity, and we will assume that µ is entirely real in our
treatment.

We can substitute (42) into (37), which results in

k = ω
√

µ(ε′ − jε′′) = ω
√

µε′
√

1 − j
ε′′

ε′ (43)

Note the presence of the second radical factor in (43), which becomes unity (and
real) as ε′′ vanishes. With nonzero ε′′, k is complex, and so losses occur which are
quantified through the attenuation coefficient, α, in (39). The phase constant, β (and
consequently the wavelength and phase velocity), will also be affected by ε′′. α and
β are found by taking the real and imaginary parts of jk from (43). We obtain:

α = Re{ jk} = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

− 1




1/2

(44)

β = Im{ jk} = ω

√
µε′

2




√
1 +

(
ε′′

ε′

)2

+ 1




1/2

(45)

We see that a nonzero α (and hence loss) results if the imaginary part of the
permittivity, ε′′, is present. We also observe in (44) and (45) the presence of the ratio
ε′′/ε′, which is called the loss tangent. The meaning of the term will be demonstrated
when we investigate the specific case of conductive media. The practical importance
of the ratio lies in its magnitude compared to unity, which enables simplifications to
be made in (44) and (45).

Whether or not losses occur, we see from (41) that the wave phase velocity is
given by

νp = ω

β
(46)

The wavelength is the distance required to effect a phase change of 2π radians

βλ = 2π
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which leads to the fundamental definition of wavelength,

λ = 2π

β
(47)

Because we have a uniform plane wave, the magnetic field is found through

Hys = Ex0

η
e−αze− jβz

where the intrinsic impedance is now a complex quantity,

η =
√

µ

ε′ − jε′′ =
√

µ

ε′
1√

1 − j(ε′′/ε′)
(48)

The electric and magnetic fields are no longer in phase.
A special case is that of a lossless medium, or perfect dielectric, in which ε′′ = 0,

and so ε = ε′. From (44), this leads to α = 0, and from (45),

β = ω
√

µε′ (lossless medium) (49)

With α = 0, the real field assumes the form

Ex = Ex0 cos(ωt − βz) (50)

We may interpret this as a wave traveling in the +z direction at a phase velocity νp,
where

νp = ω

β
= 1√

µε′ = c√
µrε′

r

The wavelength is

λ = 2π

β
= 2π

ω
√

µε′ = 1

f
√

µε′ = c

f
√

µrε′
r

= λ0√
µrε′

r

(lossless medium) (51)

where λ0 is the free space wavelength. Note that µrε
′
r > 1, and therefore the wave-

length is shorter and the velocity is lower in all real media than they are in free
space.

Associated with Ex is the magnetic field intensity

Hy = Ex0

η
cos(ωt − βz)

where the intrinsic impedance is

η =
√

µ

ε
(52)
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The two fields are once again perpendicular to each other, perpendicular to the
direction of propagation, and in phase with each other everywhere. Note that when E
is crossed into H, the resultant vector is in the direction of propagation. We shall see
the reason for this when we discuss the Poynting vector.

EXAMPLE 11.3

Let us apply these results to a 1-MHz plane wave propagating in fresh water. At
this frequency, losses in water are negligible, which means that we can assume that
ε′′ .= 0. In water, µr = 1 and at 1 MHz, ε′

r = 81.

Solution. We begin by calculating the phase constant. Using (45) with ε′′ = 0, we
have

β = ω
√

µε′ = ω
√

µ0ε0

√
ε′

r = ω
√

ε′
r

c
= 2π × 106

√
81

3.0 × 108
= 0.19 rad/m

Using this result, we can determine the wavelength and phase velocity:

λ = 2π

β
= 2π

.19
= 33 m

νp = ω

β
= 2π × 106

.19
= 3.3 × 107 m/s

The wavelength in air would have been 300 m. Continuing our calculations, we find
the intrinsic impedance using (48) with ε′′ = 0:

η =
√

µ

ε′ = η0√
ε′

r

= 377

9
= 42 


If we let the electric field intensity have a maximum amplitude of 0.1 V/m, then

Ex = 0.1 cos(2π106t − .19z) V/m

Hy = Ex

η
= (2.4 × 10−3) cos(2π106t − .19z) A/m

D11.3. A 9.375-GHz uniform plane wave is propagating in polyethylene
(see Appendix C). If the amplitude of the electric field intensity is 500 V/m
and the material is assumed to be lossless, find: (a) the phase constant; (b) the
wavelength in the polyethylene; (c) the velocity of propagation; (d) the intrinsic
impedance; (e) the amplitude of the magnetic field intensity.

Ans. 295 rad/m; 2.13 cm; 1.99 × 108 m/s; 251 
; 1.99 A/m
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EXAMPLE 11.4

We again consider plane wave propagation in water, but at the much higher micro-
wave frequency of 2.5 GHz. At frequencies in this range and higher, dipole relaxation
and resonance phenomena in the water molecules become important.2 Real and imagi-
nary parts of the permittivity are present, and both vary with frequency. At frequencies
below that of visible light, the two mechanisms together produce a value of ε′′ that
increases with increasing frequency, reaching a maximum in the vicinity of 1013 Hz.
ε′ decreases with increasing frequency, reaching a minimum also in the vicinity of
1013 Hz. Reference 3 provides specific details. At 2.5 GHz, dipole relaxation effects
dominate. The permittivity values are ε′

r = 78 and ε′′
r = 7. From (44), we have

α = (2π × 2.5 × 109)
√

78

(3.0 × 108)
√

2




√
1 +

(
7

78

)2

− 1




1/2

= 21 Np/m

This first calculation demonstrates the operating principle of the microwave oven.
Almost all foods contain water, and so they can be cooked when incident microwave
radiation is absorbed and converted into heat. Note that the field will attenuate to a
value of e−1 times its initial value at a distance of 1/α = 4.8 cm. This distance is called
the penetration depth of the material, and of course it is frequency-dependent. The
4.8 cm depth is reasonable for cooking food, since it would lead to a temperature rise
that is fairly uniform throughout the depth of the material. At much higher frequencies,
where ε′′ is larger, the penetration depth decreases, and too much power is absorbed
at the surface; at lower frequencies, the penetration depth increases, and not enough
overall absorption occurs. Commercial microwave ovens operate at frequencies in the
vicinity of 2.5 GHz.

Using (45), in a calculation very similar to that for α, we find β = 464 rad/m.
The wavelength is λ = 2π/β = 1.4 cm, whereas in free space this would have been
λ0 = c/ f = 12 cm.

Using (48), the intrinsic impedance is found to be

η = 377√
78

1√
1 − j(7/78)

= 43 + j1.9 = 43� 2.6◦ 


and Ex leads Hy in time by 2.6◦ at every point.

We next consider the case of conductive materials, in which currents are formed
by the motion of free electrons or holes under the influence of an electric field.
The governing relation is J = σE, where σ is the material conductivity. With finite
conductivity, the wave loses power through resistive heating of the material. We look
for an interpretation of the complex permittivity as it relates to the conductivity.

2 These mechanisms and how they produce a complex permittivity are described in Appendix D.
Additionally, the reader is referred to pp. 73–84 in Reference 1 and pp. 678–82 in Reference 2 for
general treatments of relaxation and resonance effects on wave propagation. Discussions and data that
are specific to water are presented in Reference 3, pp. 314–16.
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Consider the Maxwell curl equation (23) which, using (42), becomes:

∇ × Hs = jω(ε′ − jε′′)Es = ωε′′Es + jωε′Es (53)

This equation can be expressed in a more familiar way, in which conduction current
is included:

∇ × Hs = Js + jωεEs (54)

We next use Js = σEs , and interpret ε in (54) as ε′. The latter equation becomes:

∇ × Hs = (σ + jωε′)Es = Jσ s + Jds (55)

which we have expressed in terms of conduction current density, Jσ s = σEs , and
displacement current density, Jds = jωε′Es . Comparing Eqs. (53) and (55), we find
that in a conductive medium:

ε′′ = σ

ω
(56)

Let us now turn our attention to the case of a dielectric material in which the loss
is very small. The criterion by which we should judge whether or not the loss is small
is the magnitude of the loss tangent, ε′′/ε′. This parameter will have a direct influence
on the attenuation coefficient, α, as seen from Eq. (44). In the case of conducting
media, to which (56) applies, the loss tangent becomes σ/ωε′. By inspecting (55),
we see that the ratio of conduction current density to displacement current density
magnitudes is

Jσ s

Jds
= ε′′

jε′ = σ

jωε′ (57)

That is, these two vectors point in the same direction in space, but they are 90◦ out of
phase in time. Displacement current density leads conduction current density by 90◦,
just as the current through a capacitor leads the current through a resistor in parallel
with it by 90◦ in an ordinary electric circuit. This phase relationship is shown in
Figure 11.2. The angle θ (not to be confused with the polar angle in spherical
coordinates) may therefore be identified as the angle by which the displacement
current density leads the total current density, and

tan θ = ε′′

ε′ = σ

ωε′ (58)

The reasoning behind the term loss tangent is thus evident. Problem 11.16 at the end
of the chapter indicates that the Q of a capacitor (its quality factor, not its charge)
that incorporates a lossy dielectric is the reciprocal of the loss tangent.

If the loss tangent is small, then we may obtain useful approximations for the
attenuation and phase constants, and the intrinsic impedance. The criterion for a small
loss tangent is ε′′/ε′ 	 1, which we say identifies the medium as a good dielectric.
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Figure 11.2 The time-phase relationship
between Jds, Jσs, Js, and Es. The tangent of θ

is equal to σ/ωε′, and 90◦ − θ is the common
power-factor angle, or the angle by which Js

leads Es.

Considering a conductive material, for which ε′′ = σ/ω, (43) becomes

jk = jω
√

µε′
√

1 − j
σ

ωε′ (59)

We may expand the second radical using the binomial theorem

(1 + x)n = 1 + nx + n(n − 1)

2!
x2 + n(n − 1)(n − 2)

3!
x3 + · · ·

where |x | 	 1. We identify x as − jσ/ωε′ and n as 1/2, and thus

jk = jω
√

µε′
[

1 − j
σ

2ωε′ + 1

8

( σ

ωε′
)2

+ · · ·
]

= α + jβ

Now, for a good dielectric,

α = Re( jk)
.= jω

√
µε′

(
− j

σ

2ωε′
)

= σ

2

√
µ

ε′ (60a)

and

β = Im( jk)
.= ω

√
µε′

[
1 + 1

8

( σ

ωε′
)2

]
(60b)

Equations (60a) and (60b) can be compared directly with the transmission line α and
β under low-loss conditions, as expressed in Eqs. (54a) and (55b) in Chapter 10.
In this comparison, we associate σ with G, µ with L , and ε with C . Note that in
plane wave propagation in media with no boundaries, there can be no quantity that is
analogous to the transmission line conductor resistance parameter, R. In many cases,
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the second term in (60b) is small enough, so that

β
.= ω

√
µε′ (61)

Applying the binomial expansion to (48), we obtain, for a good dielectric

η
.=

√
µ

ε′

[
1 − 3

8

( σ

ωε′
)2

+ j
σ

2ωε′

]
(62a)

or

η
.=

√
µ

ε′
(

1 + j
σ

2ωε′
)

(62b)

The conditions under which these approximations can be used depend on the
desired accuracy, measured by how much the results deviate from those given by
the exact formulas, (44) and (45). Deviations of no more than a few percent occur if
σ/ωε′ < 0.1.

EXAMPLE 11.5

As a comparison, we repeat the computations of Example 11.4, using the approxima-
tion formulas (60a), (61), and (62b).

Solution. First, the loss tangent in this case is ε′′/ε′ = 7/78 = 0.09. Using (60),
with ε′′ = σ/ω, we have

α
.= ωε′′

2

√
µ

ε′ = 1

2
(7 × 8.85 × 1012)(2π × 2.5 × 109)

377√
78

= 21 cm−1

We then have, using (61b),

β
.= (2π × 2.5 × 109)

√
78/(3 × 108) = 464 rad/m

Finally, with (62b),

η
.= 377√

78

(
1 + j

7

2 × 78

)
= 43 + j1.9

These results are identical (within the accuracy limitations as determined by the given
numbers) to those of Example 11.4. Small deviations will be found, as the reader can
verify by repeating the calculations of both examples and expressing the results to four
or five significant figures. As we know, this latter practice would not be meaningful
because the given parameters were not specified with such accuracy. Such is often the
case, since measured values are not always known with high precision. Depending
on how precise these values are, one can sometimes use a more relaxed judgment on
when the approximation formulas can be used by allowing loss tangent values that
can be larger than 0.1 (but still less than 1).
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D11.4. Given a nonmagnetic material having ε′
r = 3.2 and σ = 1.5 × 10−4

S/m, find numerical values at 3 MHz for the (a) loss tangent; (b) attenuation
constant; (c) phase constant; (d) intrinsic impedance.

Ans. 0.28; 0.016 Np/m; 0.11 rad/m; 207 � 7.8◦ 


D11.5. Consider a material for which µr = 1, ε′
r = 2.5, and the loss tangent

is 0.12. If these three values are constant with frequency in the range 0.5 MHz ≤
f ≤ 100 MHz, calculate: (a) σ at 1 and 75 MHz; (b) λ at 1 and 75 MHz; (c) νp

at 1 and 75 MHz.

Ans. 1.67 × 10−5 and 1.25 × 10−3 S/m; 190 and 2.53 m; 1.90 × 108 m/s twice

11.3 POYNTING’S THEOREM
AND WAVE POWER

In order to find the power flow associated with an electromagnetic wave, it is necessary
to develop a power theorem for the electromagnetic field known as the Poynting the-
orem. It was originally postulated in 1884 by an English physicist, John H. Poynting.

The development begins with one of Maxwell’s curl equations, in which we
assume that the medium may be conductive:

∇ × H = J + ∂D
∂t

(63)

Next, we take the scalar product of both sides of (63) with E,

E · ∇ × H = E · J + E · ∂D
∂t

(64)

We then introduce the following vector identity, which may be proved by expansion
in rectangular coordinates:

∇ · (E × H) = −E · ∇ × H + H · ∇ × E (65)

Using (65) in the left side of (64) results in

H · ∇ × E − ∇ · (E × H) = J · E + E · ∂D
∂t

(66)

where the curl of the electric field is given by the other Maxwell curl equation:

∇ × E = −∂B
∂t

Therefore

−H · ∂B
∂t

− ∇ · (E × H) = J · E + E · ∂D
∂t

or

−∇ · (E × H) = J · E + εE · ∂E
∂t

+ µH · ∂H
∂t

(67)
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The two time derivatives in (67) can be rearranged as follows:

εE · ∂E
∂t

= ∂

∂t

(
1

2
D · E

)
(68a)

and

µH · ∂H
∂t

= ∂

∂t

(
1

2
B · H

)
(68b)

With these, Eq. (67) becomes

−∇ · (E × H) = J · E + ∂

∂t

(
1

2
D · E

)
+ ∂

∂t

(
1

2
B · H

)
(69)

Finally, we integrate (69) throughout a volume:

−
∫

vol
∇ · (E × H) dv =

∫

vol
J · E dv +

∫

vol

∂

∂t

(
1

2
D · E

)
dv +

∫

vol

∂

∂t

(
1

2
B · H

)
dv

The divergence theorem is then applied to the left-hand side, thus converting the
volume integral there into an integral over the surface that encloses the volume. On
the right-hand side, the operations of spatial integration and time differentiation are
interchanged. The final result is

−
∮

area
(E × H) · dS =

∫

vol
J · E dν + d

dt

∫

vol

1

2
D · E dν + d

dt

∫

vol

1

2
B · H dν (70)

Equation (70) is known as Poynting’s theorem. On the right-hand side, the first
integral is the total (but instantaneous) ohmic power dissipated within the volume. The
second integral is the total energy stored in the electric field, and the third integral is
the stored energy in the magnetic field.3 Since time derivatives are taken of the second
and third integrals, those results give the time rates of increase of energy stored within
the volume, or the instantaneous power going to increase the stored energy. The sum
of the expressions on the right must therefore be the total power flowing into this
volume, and so the total power flowing out of the volume is

∮

area
(E × H) · dS W (71)

where the integral is over the closed surface surrounding the volume. The cross product
E × H is known as the Poynting vector, S,

S = E × H W/m2 (72)

which is interpreted as an instantaneous power density, measured in watts per square
meter (W/m2). The direction of the vector S indicates the direction of the instantaneous

3 This is the expression for magnetic field energy that we have been anticipating since Chapter 8.



386 ENGINEERING ELECTROMAGNETICS

power flow at a point, and many of us think of the Poynting vector as a “pointing”
vector. This homonym, while accidental, is correct.4

Because S is given by the cross product of E and H, the direction of power flow
at any point is normal to both the E and H vectors. This certainly agrees with our
experience with the uniform plane wave, for propagation in the +z direction was
associated with an Ex and Hy component,

Ex ax × Hyay = Szaz

In a perfect dielectric, the E and H field amplitudes are given by

Ex = Ex0 cos(ωt − βz)

Hy = Ex0

η
cos(ωt − βz)

where η is real. The power density amplitude is therefore

Sz = E2
x0

η
cos2(ωt − βz) (73)

In the case of a lossy dielectric, Ex and Hy are not in time phase. We have

Ex = Ex0e−αz cos(ωt − βz)

If we let

η = |η|� θη

then we may write the magnetic field intensity as

Hy = Ex0

|η| e−αz cos(ωt − βz − θη)

Thus,

Sz = Ex Hy = E2
x0

|η| e−2αz cos(ωt − βz) cos(ωt − βz − θη) (74)

Because we are dealing with a sinusoidal signal, the time-average power density,
〈Sz〉, is the quantity that will ultimately be measured. To find this, we integrate (74)
over one cycle and divide by the period T = 1/ f . Additionally, the identity cos
A cos B = 1/2 cos(A + B) + 1/2 cos(A − B) is applied to the integrand, and we
obtain:

〈Sz〉 = 1

T

∫ T

0

1

2

E2
x0

|η| e−2αz[cos(2ωt − 2βz − 2θη) + cos θη] dt (75)

4 Note that the vector symbol S is used for the Poynting vector, and is not to be confused with the
differential area vector, dS. The latter, as we know, is the product of the outward normal to the surface
and the differential area.
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The second-harmonic component of the integrand in (75) integrates to zero, leaving
only the contribution from the dc component. The result is

〈Sz〉 = 1

2

E2
x0

|η| e−2αz cos θη (76)

Note that the power density attenuates as e−2αz , whereas Ex and Hy fall off as e−αz .
We may finally observe that the preceding expression can be obtained very easily

by using the phasor forms of the electric and magnetic fields. In vector form, this is

〈S〉 = 1

2
Re(Es × H∗

s ) W/m2 (77)

In the present case

Es = Ex0e− jβzax

and

H∗
s = Ex0

η∗ e+ jβzay = Ex0

|η| e jθe+ jβzay

where Ex0 has been assumed real. Eq. (77) applies to any sinusoidal electromagnetic
wave and gives both the magnitude and direction of the time-average power density.

D11.6. At frequencies of 1, 100, and 3000 MHz, the dielectric constant of
ice made from pure water has values of 4.15, 3.45, and 3.20, respectively, while
the loss tangent is 0.12, 0.035, and 0.0009, also respectively. If a uniform plane
wave with an amplitude of 100 V/m at z = 0 is propagating through such ice,
find the time-average power density at z = 0 and z = 10 m for each frequency.

Ans. 27.1 and 25.7 W/m2; 24.7 and 6.31 W/m2; 23.7 and 8.63 W/m2

11.4 PROPAGATION IN GOOD
CONDUCTORS: SKIN EFFECT

As an additional study of propagation with loss, we will investigate the behavior of a
good conductor when a uniform plane wave is established in it. Such a material sat-
isfies the general high-loss criterion, in which the loss tangent, ε′′/ε′ � 1. Applying
this to a good conductor leads to the more specific criterion, σ/(ωε′) � 1. As before,
we have an interest in losses that occur on wave transmission into a good conductor,
and we will find new approximations for the phase constant, attenuation coefficient,
and intrinsic impedance. New to us, however, is a modification of the basic problem,
appropriate for good conductors. This concerns waves associated with electromag-
netic fields existing in an external dielectric that adjoins the conductor surface; in
this case, the waves propagate along the surface. That portion of the overall field that
exists within the conductor will suffer dissipative loss arising from the conduction
currents it generates. The overall field therefore attenuates with increasing distance
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of travel along the surface. This is the mechanism for the resistive transmission line
loss that we studied in Chapter 10, and which is embodied in the line resistance
parameter, R.

As implied, a good conductor has a high conductivity and large conduction
currents. The energy represented by the wave traveling through the material therefore
decreases as the wave propagates because ohmic losses are continuously present.
When we discussed the loss tangent, we saw that the ratio of conduction current
density to the displacement current density in a conducting material is given by
σ/ωε′. Choosing a poor metallic conductor and a very high frequency as a conservative
example, this ratio5 for nichrome (σ

.= 106) at 100 MHz is about 2 × 108. We therefore
have a situation where σ/ωε′ � 1, and we should be able to make several very good
approximations to find α, β, and η for a good conductor.

The general expression for the propagation constant is, from (59),

jk = jω
√

µε′
√

1 − j
σ

ωε′

which we immediately simplify to obtain

jk = jω
√

µε′
√

− j
σ

ωε′

or

jk = j
√

− jωµσ

But

− j = 1 � −90◦

and
√

1 � −90◦ = 1 � −45◦ = 1√
2

(1 − j)

Therefore

jk = j(1 − j)

√
ωµσ

2
= (1 + j)

√
π f µσ = α + jβ (78)

Hence

α = β =
√

π f µσ (79)

Regardless of the parameters µ and σ of the conductor or of the frequency of the
applied field, α and β are equal. If we again assume only an Ex component traveling
in the +z direction, then

Ex = Ex0e−z
√

π f µσ cos
(
ωt − z

√
π f µσ

)
(80)

5 It is customary to take ε′ = ε0 for metallic conductors.
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We may tie this field in the conductor to an external field at the conductor surface.
We let the region z > 0 be the good conductor and the region z < 0 be a perfect
dielectric. At the boundary surface z = 0, (80) becomes

Ex = Ex0 cos ωt (z = 0)

This we shall consider as the source field that establishes the fields within the con-
ductor. Since displacement current is negligible,

J = σE

Thus, the conduction current density at any point within the conductor is directly
related to E:

Jx = σ Ex = σ Ex0e−z
√

π fµσ cos
(
ωt − z

√
π f µσ

)
(81)

Equations (80) and (81) contain a wealth of information. Considering first the
negative exponential term, we find an exponential decrease in the conduction current
density and electric field intensity with penetration into the conductor (away from the
source). The exponential factor is unity at z = 0 and decreases to e−1 = 0.368 when

z = 1√
π fµσ

This distance is denoted by δ and is termed the depth of penetration, or the skin depth,

δ = 1√
π f µσ

= 1

α
= 1

β
(82)

It is an important parameter in describing conductor behavior in electromagnetic
fields. To get some idea of the magnitude of the skin depth, let us consider copper,
σ = 5.8 × 107 S/m, at several different frequencies. We have

δCu = 0.066√
f

At a power frequency of 60 Hz, δCu = 8.53 mm. Remembering that the power density
carries an exponential term e−2αz , we see that the power density is multiplied by a
factor of 0.3682 = 0.135 for every 8.53 mm of distance into the copper.

At a microwave frequency of 10,000 MHz, δ is 6.61 × 10−4 mm. Stated more
generally, all fields in a good conductor such as copper are essentially zero at distances
greater than a few skin depths from the surface. Any current density or electric field
intensity established at the surface of a good conductor decays rapidly as we progress
into the conductor. Electromagnetic energy is not transmitted in the interior of a
conductor; it travels in the region surrounding the conductor, while the conductor
merely guides the waves. We will consider guided propagation in more detail in
Chapter 13.

Suppose we have a copper bus bar in the substation of an electric utility company
which we wish to have carry large currents, and we therefore select dimensions of 2
by 4 inches. Then much of the copper is wasted, for the fields are greatly reduced in
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one skin depth, about 8.5 mm.6 A hollow conductor with a wall thickness of about
12 mm would be a much better design. Although we are applying the results of an
analysis for an infinite planar conductor to one of finite dimensions, the fields are
attenuated in the finite-size conductor in a similar (but not identical) fashion.

The extremely short skin depth at microwave frequencies shows that only the sur-
face coating of the guiding conductor is important. A piece of glass with an evaporated
silver surface 3 µm thick is an excellent conductor at these frequencies.

Next, let us determine expressions for the velocity and wavelength within a good
conductor. From (82), we already have

α = β = 1

δ
=

√
π f µσ

Then, as

β = 2π

λ

we find the wavelength to be

λ = 2πδ (83)

Also, recalling that

νp = ω

β

we have

νp = ωδ (84)

For copper at 60 Hz, λ = 5.36 cm and νp = 3.22 m/s, or about 7.2 mi/h! A lot of us
can run faster than that. In free space, of course, a 60 Hz wave has a wavelength of
3100 mi and travels at the velocity of light.

EXAMPLE 11.6

Let us again consider wave propagation in water, but this time we will consider
seawater. The primary difference between seawater and fresh water is of course the
salt content. Sodium chloride dissociates in water to form Na+ and Cl− ions, which,
being charged, will move when forced by an electric field. Seawater is thus conductive,
and so it will attenuate electromagnetic waves by this mechanism. At frequencies
in the vicinity of 107 Hz and below, the bound charge effects in water discussed
earlier are negligible, and losses in seawater arise principally from the salt-associated
conductivity. We consider an incident wave of frequency 1 MHz. We wish to find the
skin depth, wavelength, and phase velocity. In seawater, σ = 4 S/m, and ε′

r = 81.

6 This utility company operates at 60 Hz.
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Solution. We first evaluate the loss tangent, using the given data:

σ

ωε′ = 4

(2π × 106)(81)(8.85 × 10−12)
= 8.9 × 102 � 1

Seawater is therefore a good conductor at 1 MHz (and at frequencies lower than this).
The skin depth is

δ = 1√
π f µσ

= 1√
(π × 106)(4π × 10−7)(4)

= 0.25 m = 25 cm

Now

λ = 2πδ = 1.6 m

and

νp = ωδ = (2π × 106)(0.25) = 1.6 × 106 m/sec

In free space, these values would have been λ = 300 m and of course ν = c.
With a 25-cm skin depth, it is obvious that radio frequency communication in

seawater is quite impractical. Notice, however, that δ varies as 1/
√

f , so that things
will improve at lower frequencies. For example, if we use a frequency of 10 Hz (in
the ELF, or extremely low frequency range), the skin depth is increased over that at
1 MHz by a factor of

√
106/10, so that

δ(10 Hz)
.= 80 m

The corresponding wavelength is λ = 2πδ
.= 500 m. Frequencies in the ELF range

were used for many years in submarine communications. Signals were transmitted
from gigantic ground-based antennas (required because the free-space wavelength
associated with 10 Hz is 3 × 107 m). The signals were then received by submarines,
from which a suspended wire antenna of length shorter than 500 m is sufficient. The
drawback is that signal data rates at ELF are slow enough that a single word can
take several minutes to transmit. Typically, ELF signals would be used to tell the
submarine to initiate emergency procedures, or to come near the surface in order to
receive a more detailed message via satellite.

We next turn our attention to finding the magnetic field, Hy , associated with Ex .
To do so, we need an expression for the intrinsic impedance of a good conductor. We
begin with Eq. (48), Section 11.2, with ε′′ = σ/ω,

η =
√

jωµ

σ + jωε′

Since σ � ωε′, we have

η =
√

jωµ

σ
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which may be written as

η =
√

2� 45◦

σδ
= (1 + j)

σδ
(85)

Thus, if we write (80) in terms of the skin depth,

Ex = Ex0e−z/δ cos
(
ωt − z

δ

)
(86)

then

Hy = σδEx0√
2

e−z/δ cos
(
ωt − z

δ
− π

4

)
(87)

and we see that the maximum amplitude of the magnetic field intensity occurs one-
eighth of a cycle later than the maximum amplitude of the electric field intensity at
every point.

From (86) and (87) we may obtain the time-average Poynting vector by applying
(77),

〈Sz〉 = 1

2

σδE2
x0√

2
e−2z/δ cos

(π

4

)

or

〈Sz〉 = 1

4
σδE2

x0e−2z/δ

We again note that in a distance of one skin depth the power density is only e−2 =
0.135 of its value at the surface.

The total average power loss in a width 0 < y < b and length 0 < x < L in
the direction of the current, as shown in Figure 11.3, is obtained by finding the power

Figure 11.3 The current density Jx =
Jx0e−z/δe− j z/δ decreases in magnitude as the wave
propagates into the conductor. The average power
loss in the region 0 < x < L , 0 < y < b, z > 0,
is δbL J2

x0/4σ watts.
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crossing the conductor surface within this area,

PL =
∫

area
〈Sz〉da =

∫ b

0

∫ L

0

1

4
σδE2

x0e−2z/δ
∣∣∣
z=0

dx dy = 1

4
σδbL E2

x0

In terms of the current density Jx0 at the surface,

Jx0 = σ Ex0

we have

PL = 1

4σ
δbL J 2

x0 (88)

Now let us see what power loss would result if the total current in a width b were
distributed uniformly in one skin depth. To find the total current, we integrate the
current density over the infinite depth of the conductor,

I =
∫ ∞

0

∫ b

0
Jx dy dz

where

Jx = Jx0e−z/δ cos
(
ωt − z

δ

)

or in complex exponential notation to simplify the integration,

Jxs = Jx0e−z/δe− j z/δ

= Jx0e−(1+ j)z/δ

Therefore,

Is =
∫ ∞

0

∫ b

0
Jx0e−(1+ j)z/δdy dz

= Jx0be−(1+ j)z/δ −δ

1 + j

∣∣∣∣
∞

0

= Jx0bδ

1 + j

and

I = Jx0bδ√
2

cos
(
ωt − π

4

)

If this current is distributed with a uniform density J ′ throughout the cross section
0 < y < b, 0 < z < δ, then

J ′ = Jx0√
2

cos
(
ωt − π

4

)

The ohmic power loss per unit volume is J · E, and thus the total instantaneous power
dissipated in the volume under consideration is

PLi (t) = 1

σ
(J ′)2bLδ = J 2

x0

2σ
bLδ cos2

(
ωt − π

4

)
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The time-average power loss is easily obtained, since the average value of the cosine-
squared factor is one-half,

PL = 1

4σ
J 2

x0bLδ (89)

Comparing (88) and (89), we see that they are identical. Thus the average power
loss in a conductor with skin effect present may be calculated by assuming that the
total current is distributed uniformly in one skin depth. In terms of resistance, we may
say that the resistance of a width b and length L of an infinitely thick slab with skin
effect is the same as the resistance of a rectangular slab of width b, length L , and
thickness δ without skin effect, or with uniform current distribution.

We may apply this to a conductor of circular cross section with little error,
provided that the radius a is much greater than the skin depth. The resistance at
a high frequency where there is a well-developed skin effect is therefore found by
considering a slab of width equal to the circumference 2πa and thickness δ. Hence

R = L

σ S
= L

2πaσδ
(90)

A round copper wire of 1 mm radius and 1 km length has a resistance at direct
current of

Rdc = 103

π10−6(5.8 × 107)
= 5.48 


At 1 MHz, the skin depth is 0.066 mm. Thus δ 	 a, and the resistance at 1 MHz is
found by (90),

R = 103

2π10−3(5.8 × 107)(0.066 × 10−3)
= 41.5 


D11.7. A steel pipe is constructed of a material for which µr = 180 and
σ = 4 × 106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If
the total current I (t) carried by the pipe is 8 cos ωt A, where ω = 1200π rad/s,
find: (a) the skin depth; (b) the effective resistance; (c) the dc resistance; (d)
the time-average power loss.

Ans. 0.766 mm; 0.557 
; 0.249 
; 17.82 W

11.5 WAVE POLARIZATION
In the previous sections, we have treated uniform plane waves in which the electric
and magnetic field vectors were assumed to lie in fixed directions. Specifically, with
the wave propagating along the z axis, E was taken to lie along x , which then required
H to lie along y. This orthogonal relationship between E, H, and S is always true for
a uniform plane wave. The directions of E and H within the plane perpendicular to az
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may change, however, as functions of time and position, depending on how the wave
was generated or on what type of medium it is propagating through. Thus a complete
description of an electromagnetic wave would not only include parameters such as
its wavelength, phase velocity, and power, but also a statement of the instantaneous
orientation of its field vectors. We define the wave polarization as the time-dependent
electric field vector orientation at a fixed point in space. A more complete character-
ization of a wave’s polarization would in fact include specifying the field orientation
at all points because some waves demonstrate spatial variations in their polarization.
Specifying only the electric field direction is sufficient, since magnetic field is readily
found from E using Maxwell’s equations.

In the waves we have previously studied, E was in a fixed straight orientation for
all times and positions. Such a wave is said to be linearly polarized. We have taken E
to lie along the x axis, but the field could be oriented in any fixed direction in the xy
plane and be linearly polarized. For positive z propagation, the wave would in general
have its electric field phasor expressed as

Es = (Ex0ax + Ey0ay)e−αze− jβz (91)

where Ex0 and Ey0 are constant amplitudes along x and y. The magnetic field is readily
found by determining its x and y components directly from those of Es . Specifically,
Hs for the wave of Eq. (91) is

Hs = [Hx0ax + Hy0ay] e−αze − jβz =
[
− Ey0

η
ax + Ex0

η
ay

]
e−αze− jβz (92)

The two fields are sketched in Figure 11.4. The figure demonstrates the reason
for the minus sign in the term involving Ey0 in Eq. (92). The direction of power flow,
given by E × H, is in the positive z direction in this case. A component of E in the

Figure 11.4 Electric and magnetic
field configuration for a general linearly
polarized plane wave propagating in
the forward z direction (out of the
page). Field components correspond
to those in Eqs. (91) and (92).
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positive y direction would require a component of H in the negative x direction—thus
the minus sign. Using (91) and (92), the power density in the wave is found using (77):

〈Sz〉 = 1

2
Re{Es × H∗

s } = 1

2
Re{Ex0 H∗

y0(ax × ay) + Ey0 H∗
x0(ay × ax )}e−2αz

= 1

2
Re

{
Ex0 E∗

x0

η∗ + Ey0 E∗
y0

η∗

}
e−2αzaz

= 1

2
Re

{
1

η∗

}
(|Ex0|2 + |Ey0|2)e−2αzaz W/m2

This result demonstrates the idea that our linearly polarized plane wave can be con-
sidered as two distinct plane waves having x and y polarizations, whose electric fields
are combining in phase to produce the total E. The same is true for the magnetic field
components. This is a critical point in understanding wave polarization, in that any
polarization state can be described in terms of mutually perpendicular components
of the electric field and their relative phasing.

We next consider the effect of a phase difference, φ, between Ex0 and Ey0, where
φ < π/2. For simplicity, we will consider propagation in a lossless medium. The
total field in phasor form is

Es = (Ex0ax + Ey0e jφay)e− jβz (93)

Again, to aid in visualization, we convert this wave to real instantaneous form by
multiplying by e jωt and taking the real part:

E(z, t) = Ex0 cos(ωt − βz)ax + Ey0 cos(ωt − βz + φ)ay (94)

where we have assumed that Ex0 and Ey0 are real. Suppose we set t = 0, in which
case (94) becomes [using cos(−x) = cos(x)]

E(z, 0) = Ex0 cos(βz)ax + Ey0 cos(βz − φ)ay (95)

The component magnitudes of E(z, 0) are plotted as functions of z in Figure 11.5.
Since time is fixed at zero, the wave is frozen in position. An observer can move
along the z axis, measuring the component magnitudes and thus the orientation of the
total electric field at each point. Let’s consider a crest of Ex , indicated as point a in
Figure 11.5. If φ were zero, Ey would have a crest at the same location. Since φ is
not zero (and positive), the crest of Ey that would otherwise occur at point a is now
displaced to point b farther down z. The two points are separated by distance φ/β.
Ey thus lags behind Ex when we consider the spatial dimension.

Now suppose the observer stops at some location on the z axis, and time is
allowed to move forward. Both fields now move in the positive z direction, as (94)
indicates. But point b reaches the observer first, followed by point a. So we see that
Ey leads Ex when we consider the time dimension. In either case (fixed t and varying
z, or vice versa) the observer notes that the net field rotates about the z axis while
its magnitude changes. Considering a starting point in z and t , at which the field has
a given orientation and magnitude, the wave will return to the same orientation and
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Figure 11.5 Plots of the electric field component magnitudes in Eq. (95) as
functions of z. Note that the y component lags behind the x component in z.
As time increases from zero, both waves travel to the right, as per Eq. (94).
Thus, to an observer at a fixed location, the y component leads in time.

magnitude at a distance of one wavelength in z (for fixed t) or at a time t = 2π/ω

later (at a fixed z).
For illustration purposes, if we take the length of the field vector as a measure

of its magnitude, we find that at a fixed position, the tip of the vector traces out the
shape of an ellipse over time t = 2π/ω. The wave is said to be elliptically polarized.
Elliptical polarization is in fact the most general polarization state of a wave, since
it encompasses any magnitude and phase difference between Ex and Ey . Linear
polarization is a special case of elliptical polarization in which the phase difference
is zero.

Another special case of elliptical polarization occurs when Ex0 = Ey0 = E0 and
when φ = ±π/2. The wave in this case exhibits circular polarization. To see this,
we incorporate these restrictions into Eq. (94) to obtain

E(z, t) = E0[cos(ωt − βz)ax + cos(ωt − βz ± π/2)ay]

= E0[cos(ωt − βz)ax ∓ sin(ωt − βz)ay] (96)

If we consider a fixed position along z (such as z = 0) and allow time to vary, (96),
with φ = +π/2, becomes

E(0, t) = E0[cos(ωt)ax − sin(ωt)ay] (97)

If we choose −π/2 in (96), we obtain

E(0, t) = E0[cos(ωt)ax + sin(ωt)ay] (98)

The field vector of Eq. (98) rotates in the counterclockwise direction in the xy plane,
while maintaining constant amplitude E0, and so the tip of the vector traces out a
circle. Figure 11.6 shows this behavior.
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Figure 11.6 Electric field in the xy plane
of a right circularly polarized plane wave,
as described by Eq. (98). As the wave
propagates in the forward z direction, the
field vector rotates counterclockwise in the
xy plane.

Choosing +π/2 leads to (97), whose field vector rotates in the clockwise direction.
The handedness of the circular polarization is associated with the rotation and propa-
gation directions in the following manner: The wave exhibits left circular polarization
(l.c.p.) if, when orienting the left hand with the thumb in the direction of propagation,
the fingers curl in the rotation direction of the field with time. The wave exhibits right
circular polarization (r.c.p.) if, with the right-hand thumb in the propagation direc-
tion, the fingers curl in the field rotation direction.7 Thus, with forward z propagation,
(97) describes a left circularly polarized wave, and (98) describes a right circularly
polarized wave. The same convention is applied to elliptical polarization, in which
the descriptions left elliptical polarization and right elliptical polarization are used.

Using (96), the instantaneous angle of the field from the x direction can be found
for any position along z through

θ (z, t) = tan−1

(
Ey

Ex

)
= tan−1

(∓sin(ωt − βz)

cos(ωt − βz)

)
= ∓(ωt − βz) (99)

where again the minus sign (yielding l.c.p. for positive z travel) applies for the choice
of φ = +π/2 in (96); the plus sign (yielding r.c.p. for positive z travel) is used if

7 This convention is reversed by some workers (most notably in optics) who emphasize the importance
of the spatial field configuration. Note that r.c.p. by our definition is formed by propagating a spatial
field that is in the shape of a left-handed screw, and for that reason it is sometimes called left circular
polarization (see Figure 11.7). Left circular polarization as we define it results from propagating a
spatial field in the shape of a right-handed screw, and it is called right circular polarization by the
spatial enthusiasts. Caution is obviously necessary in interpreting what is meant when polarization
handedness is stated in an unfamiliar text.
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Figure 11.7 Representation of a right circularly polarized wave. The electric
field vector (in white) will rotate toward the y axis as the entire wave moves
through the xy plane in the direction of k. This counterclockwise rotation (when
looking toward the wave source) satisfies the temporal right-handed rotation
convention as described in the text. The wave, however, appears as a
left-handed screw, and for this reason it is called left circular polarization in the
other convention.

φ = −π/2. If we choose z = 0, the angle becomes simply ωt , which reaches 2π

(one complete rotation) at time t = 2π/ω. If we choose t = 0 and allow z to vary, we
form a corkscrew-like field pattern. One way to visualize this is to consider a spiral
staircase–shaped pattern, in which the field lines (stairsteps) are perpendicular to the z
(or staircase) axis. The relationship between this spatial field pattern and the resulting
time behavior at fixed z as the wave propagates is shown in an artist’s conception in
Figure 11.7.

The handedness of the polarization is changed by reversing the pitch of the
corkscrew pattern. The spiral staircase model is only a visualization aid. It must be
remembered that the wave is still a uniform plane wave whose fields at any position
along z are infinite in extent over the transverse plane.

There are many uses of circularly polarized waves. Perhaps the most obvious
advantage is that reception of a wave having circular polarization does not depend
on the antenna orientation in the plane normal to the propagation direction. Dipole
antennas, for example, are required to be oriented along the electric field direction
of the signal they receive. If circularly polarized signals are transmitted, the receiver
orientation requirements are relaxed considerably. In optics, circularly polarized light
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can be passed through a polarizer of any orientation, thus yielding linearly polarized
light in any direction (although one loses half the original power this way). Other
uses involve treating linearly polarized light as a superposition of circularly polarized
waves, to be described next.

Circularly polarized light can be generated using an anisotropic medium—a
material whose permittivity is a function of electric field direction. Many crystals
have this property. A crystal orientation can be found such that along one direction
(say, the x axis), the permittivity is lowest, while along the orthogonal direction
(y axis), the permittivity is highest. The strategy is to input a linearly polarized wave
with its field vector at 45 degrees to the x and y axes of the crystal. It will thus have
equal-amplitude x and y components in the crystal, and these will now propagate in
the z direction at different speeds. A phase difference (or retardation) accumulates
between the components as they propagate, which can reach π/2 if the crystal is long
enough. The wave at the output thus becomes circularly polarized. Such a crystal, cut
to the right length and used in this manner, is called a quarter-wave plate, since it
introduces a relative phase shift of π/2 between Ex and Ey , which is equivalent to λ/4.

It is useful to express circularly polarized waves in phasor form. To do this, we
note that (96) can be expressed as

E(z, t) = Re
{

E0e jωt e− jβz
[
ax + e± jπ/2ay

]}

Using the fact that e± jπ/2 = ± j , we identify the phasor form as:

Es = E0(ax ± jay)e− jβz (100)

where the plus sign is used for left circular polarization and the minus sign for right
circular polarization. If the wave propagates in the negative z direction, we have

Es = E0(ax ± jay)e+ jβz (101)

where in this case the positive sign applies to right circular polarization and the minus
sign to left circular polarization. The student is encouraged to verify this.

EXAMPLE 11.7

Let us consider the result of superimposing left and right circularly polarized fields
of the same amplitude, frequency, and propagation direction, but where a phase shift
of δ radians exists between the two.

Solution. Taking the waves to propagate in the +z direction, and introducing a
relative phase, δ, the total phasor field is found, using (100):

EsT = Es R + EsL = E0[ax − jay]e− jβz + E0[ax + jay]e− jβze jδ

Grouping components together, this becomes

EsT = E0[(1 + e jδ)ax − j(1 − e jδ)ay]e− jβz

Factoring out an overall phase term, e jδ/2, we obtain

EsT = E0e jδ/2
[
(e− jδ/2 + e jδ/2)ax − j(e− jδ/2 − e jδ/2)ay

]
e− jβz
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From Euler’s identity, we find that e jδ/2 + e− jδ/2 = 2 cos δ/2, and e jδ/2 − e− jδ/2 =
2 j sin δ/2. Using these relations, we obtain

EsT = 2E0[cos(δ/2)ax + sin(δ/2)ay]e− j(βz−δ/2) (102)

We recognize (102) as the electric field of a linearly polarized wave, whose field
vector is oriented at angle δ/2 from the x axis.

Example 11.7 shows that any linearly polarized wave can be expressed as the
sum of two circularly polarized waves of opposite handedness, where the linear po-
larization direction is determined by the relative phase difference between the two
waves. Such a representation is convenient (and necessary) when considering, for
example, the propagation of linearly polarized light through media which contain
organic molecules. These often exhibit spiral structures having left- or right-handed
pitch, and they will thus interact differently with left- or right-hand circular polar-
ization. As a result, the left circular component can propagate at a different speed
than the right circular component, and so the two waves will accumulate a phase
difference as they propagate. As a result, the direction of the linearly polarized field
vector at the output of the material will differ from the direction that it had at the
input. The extent of this rotation can be used as a measurement tool to aid in material
studies.

Polarization issues will become extremely important when we consider wave
reflection in Chapter 12.
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CHAPTER 11 PROBLEMS
11.1 Show that Exs = Ae j(k0z+φ) is a solution of the vector Helmholtz equation,

Eq. (30), for k0 = ω
√

µ0ε0 and any φ and A.

11.2 A 10 GHz uniform plane wave propagates in a lossless medium for which
εr = 8 and µr = 2. Find (a) νp; (b) β; (c) λ; (d) Es ; (e) Hs ; ( f ) 〈S〉.

11.3 An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m.
Find (a) β; (b) λ; (c) E(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns.

11.4 Small antennas have low efficiencies (as will be seen in Chapter 14), and the
efficiency increases with size up to the point at which a critical dimension of
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the antenna is an appreciable fraction of a wavelength, say λ/8. (a) An
antenna that is 12 cm long is operated in air at 1 MHz. What fraction of a
wavelength long is it? (b) The same antenna is embedded in a ferrite
material for which εr = 20 and µr = 2, 000. What fraction of a wavelength
is it now?

11.5 A 150 MHz uniform plane wave in free space is described by Hs =
(4 + j10)(2ax + jay)e− jβz A/m. (a) Find numerical values for ω, λ, and β.
(b) Find H(z, t) at t = 1.5 ns, z = 20 cm. (c) What is |E |max?

11.6 A uniform plane wave has electric field
Es = (Ey0 ay − Ez0 az) e−αx e− jβx V/m. The intrinsic impedance of the
medium is given as η = |η| e jφ , where φ is a constant phase. (a) Describe
the wave polarization and state the direction of propagation. (b) Find Hs . (c)
Find E(x, t) and H(x, t). (d) Find < S > in W/m2. (e) Find the
time-average power in watts that is intercepted by an antenna of rectangular
cross-section, having width w and height h, suspended parallel to the yz
plane, and at a distance d from the wave source.

11.7 The phasor magnetic field intensity for a 400 MHz uniform plane wave
propagating in a certain lossless material is (2ay − j5az)e− j25x A/m.
Knowing that the maximum amplitude of E is 1500 V/m, find β, η, λ, νp,
εr , µr , and H(x, y, z, t).

11.8 An electric field in free space is given in spherical coordinates as
Es(r ) = E0(r )e− jkr aθ V/m. (a) Find Hs(r ) assuming uniform plane wave
behavior. (b) Find < S >. (c) Express the average outward power in watts
through a closed spherical shell of radius r , centered at the origin. (d)
Establish the required functional form of E0(r ) that will enable the power
flow in part c to be independent of radius. With this condition met, the given
field becomes that of an isotropic radiator in a lossless medium (radiating
equal power density in all directions).

11.9 A certain lossless material has µr = 4 and εr = 9. A 10-MHz uniform plane
wave is propagating in the ay direction with Ex0 = 400 V/m and Ey0 =
Ez0 = 0 at P(0.6, 0.6, 0.6) at t = 60 ns. Find (a) β, λ, νp, and η; (b) E(y, t);
(c) H(y, t).

11.10 In a medium characterized by intrinsic impedance η = |η|e jφ , a linearly
polarized plane wave propagates, with magnetic field given as Hs =
(H0yay + H0zaz)e−αx e− jβx . Find (a) Es ; (b) E(x, t); (c) H(x, t); (d) 〈S〉.

11.11 A 2 GHz uniform plane wave has an amplitude Ey0 = 1.4 kV/m at (0, 0, 0,

t = 0) and is propagating in the az direction in a medium where ε′′ = 1.6 ×
10−11 F/m, ε′ = 3.0 × 10−11 F/m, and µ = 2.5 µH/m. Find (a) Ey at
P(0, 0, 1.8 cm) at 0.2 ns; (b) Hx at P at 0.2 ns.

11.12 Describe how the attenuation coefficient of a liquid medium, assumed to be
a good conductor, could be determined through measurement of wavelength
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in the liquid at a known frequency. What restrictions apply? Could this
method be used to find the conductivity as well?

11.13 Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 
 for a uniform plane
propagating in the az direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′ for the
medium.

11.14 A certain nonmagnetic material has the material constants ε′
r = 2 and

ε′′/ε′ = 4 × 10−4 at ω = 1.5 Grad/s. Find the distance a uniform plane
wave can propagate through the material before (a) it is attenuated by 1 Np;
(b) the power level is reduced by one-half; (c) the phase shifts 360◦.

11.15 A 10 GHz radar signal may be represented as a uniform plane wave in a
sufficiently small region. Calculate the wavelength in centimeters and the
attenuation in nepers per meter if the wave is propagating in a nonmagnetic
material for which (a) ε′

r = 1 and ε′′
r = 0; (b) ε′

r = 1.04 and ε′′
r = 9.00 ×

10−4; (c) ε′
r = 2.5 and ε′′

r = 7.2.

11.16 Consider the power dissipation term,
∫

E · Jdv , in Poynting’s theorem (Eq.
(70)). This gives the power lost to heat within a volume into which
electromagnetic waves enter. The term pd = E · J is thus the power
dissipation per unit volume in W/m3. Following the same reasoning that
resulted in Eq. (77), the time-average power dissipation per volume will be
< pd >= (1/2)Re

{
Es · J∗

s

}
. (a) Show that in a conducting medium,

through which a uniform plane wave of amplitude E0 propagates in the
forward z direction, < pd >= (σ/2)|E0|2e−2αz . (b) Confirm this result for
the special case of a good conductor by using the left hand side of Eq. (70),
and consider a very small volume.

11.17 Let η = 250 + j30 
 and jk = 0.2 + j2m−1 for a uniform plane wave
propagating in the az direction in a dielectric having some finite
conductivity. If |Es | = 400 V/m at z = 0, find (a) 〈S〉 at z = 0 and z = 60
cm; (b) the average ohmic power dissipation in watts per cubic meter at
z = 60 cm.

11.18 Given a 100-MHz uniform plane wave in a medium known to be a good
dielectric, the phasor electric field is Es = 4e−0.5ze− j20zax V/m. Determine
(a) ε′; (b) ε′′; (c) η; (d) Hs ; (e) 〈S〉; ( f ) the power in watts that is incident
on a rectangular surface measuring 20 m × 30 m at z = 10 m.

11.19 Perfectly conducting cylinders with radii of 8 mm and 20 mm are coaxial.
The region between the cylinders is filled with a perfect dielectric for which
ε = 10−9/4π F/m and µr = 1. If E in this region is (500/ρ) cos(ωt − 4z)aρ

V/m, find (a) ω, with the help of Maxwell’s equations in cylindrical
coordinates; (b) H(ρ, z, t); (c) 〈S(ρ, z, t)〉; (d) the average power passing
through every cross section 8 < ρ < 20 mm, 0 < φ < 2π .

11.20 Voltage breakdown in air at standard temperature and pressure occurs at an
electric field strength of approximately 3 × 106 V/m. This becomes an issue
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in some high-power optical experiments, in which tight focusing of light
may be necessary. Estimate the lightwave power in watts that can be
focused into a cylindrical beam of 10µm radius before breakdown occurs.
Assume uniform plane wave behavior (although this assumption will
produce an answer that is higher than the actual number by as much as a
factor of 2, depending on the actual beam shape).

11.21 The cylindrical shell, 1 cm< ρ < 1.2 cm, is composed of a conducting
material for which σ = 106 S/m. The external and internal regions are
nonconducting. Let Hφ = 2000 A/m at ρ = 1.2 cm. Find (a) H
everywhere; (b) E everywhere; (c) 〈S〉 everywhere.

11.22 The inner and outer dimensions of a coaxial copper transmission line are
2 and 7 mm, respectively. Both conductors have thicknesses much greater
than δ. The dielectric is lossless and the operating frequency is 400 MHz.
Calculate the resistance per meter length of the (a) inner conductor;
(b) outer conductor; (c) transmission line.

11.23 A hollow tubular conductor is constructed from a type of brass having a
conductivity of 1.2 × 107 S/m. The inner and outer radii are 9 and 10 mm,
respectively. Calculate the resistance per meter length at a frequency of
(a) dc; (b) 20 MHz; (c) 2 GHz.

11.24 (a) Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 ×
106 S/m and µr = 500 for the stainless steel interior, and find the depth of
penetration. (b) Let Es = 50� 0◦ V/m at the surface of the conductor, and
plot a curve of the amplitude of Es versus the angle of Es as the field
propagates into the stainless steel.

11.25 A good conductor is planar in form, and it carries a uniform plane wave that
has a wavelength of 0.3 mm and a velocity of 3 × 105 m/s. Assuming the
conductor is nonmagnetic, determine the frequency and the conductivity.

11.26 The dimensions of a certain coaxial transmission line are a = 0.8 mm and
b = 4 mm. The outer conductor thickness is 0.6 mm, and all conductors
have σ = 1.6 × 107 S/m. (a) Find R, the resistance per unit length at an
operating frequency of 2.4 GHz. (b) Use information from Sections 6.3 and
8.10 to find C and L , the capacitance and inductance per unit length,
respectively. The coax is air-filled. (c) Find α and β if
α + jβ = √

jωC(R + jωL).

11.27 The planar surface z = 0 is a brass-Teflon interface. Use data available in
Appendix C to evaluate the following ratios for a uniform plane wave
having ω = 4 × 1010 rad/s: (a) αTef/αbrass; (b) λTef/λbrass; (c) vTef/νbrass.

11.28 A uniform plane wave in free space has electric field vector given by Es =
10e− jβx az + 15e− jβx ay V/m. (a) Describe the wave polarization.
(b) Find Hs . (c) Determine the average power density in the wave
in W/m2.
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11.29 Consider a left circularly polarized wave in free space that propagates in the
forward z direction. The electric field is given by the appropriate form of
Eq. (100). Determine (a) the magnetic field phasor, Hs ; (b) an expression
for the average power density in the wave in W/m2 by direct application of
Eq. (77).

11.30 In an anisotropic medium, permittivity varies with electric field direction,
and is a property seen in most crystals. Consider a uniform plane wave
propagating in the z direction in such a medium, and which enters the
material with equal field components along the x and y axes. The field
phasor will take the form:

Es(z) = E0(ax + ay e j�βz) e− jβz

where �β = βx − βy is the difference in phase constants for waves that are
linearly polarized in the x and y directions. Find distances into the material
(in terms of �β) at which the field is (a) linearly polarized and (b)
circularly polarized. (c) Assume intrinsic impedance η that is approximately
constant with field orientation and find Hs and < S >.

11.31 A linearly polarized uniform plane wave, propagating in the forward z
direction, is input to a lossless anisotropic material, in which the dielectric
constant encountered by waves polarized along y(εr y) differs from that seen
by waves polarized along x(εr x ). Suppose εr x = 2.15, εr y = 2.10, and the
wave electric field at input is polarized at 45◦ to the positive x and y axes.
(a) Determine, in terms of the free space wavelength, λ, the shortest length
of the material, such that the wave, as it emerges from the output, is
circularly polarized. (b) Will the output wave be right or left circularly
polarized? Problem 11.30 is good background.

11.32 Suppose that the length of the medium of Problem 11.31 is made to be twice
that determined in the problem. Describe the polarization of the output
wave in this case.

11.33 Given a wave for which Es = 15e− jβzax + 18e− jβze jφay V/m in a medium
characterized by complex intrinsic impedance, η (a) find Hs ; (b) determine
the average power density in W/m2.

11.34 Given a general elliptically polarized wave as per Eq. (93):

Es = [Ex0ax + Ey0e jφay]e− jβz

(a) Show, using methods similar to those of Example 11.7, that a linearly
polarized wave results when superimposing the given field and a phase-
shifted field of the form:

Es = [Ex0ax + Ey0e− jφay]e− jβze jδ

where δ is a constant. (b) Find δ in terms of φ such that the resultant wave is
linearly polarized along x .
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